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Abstract The emergence of new computational media is radically changing the
practices of science, particularly in the way computational models are built and
used to understand and engineer complex biological systems. These new practices
present a novel variation of model-based reasoning (MBR), based on dynamic and
opaque models. A new cognitive account of MBR is needed to understand the
nature of this practice and its implications. To develop such an account, I first
outline two cases where the building and use of computational models led to
discoveries. A theoretical model of the possible cognitive and neural mecha-
nisms underlying such discoveries is then presented, based on the way the body
schema is extended during tool use. This account suggests that the process of
building the computational model gradually ‘incorporates’ the external model as a
part of the internal imagination system, similar to the way tools are incorporated
into the body schema through their active use. A central feature of this incorpo-
ration account is the critical role played by tacit and implicit reasoning. Based on
this account, I examine how computational modeling would change model-based
reasoning in science and science education.

1 Introduction

Modern science deals with entities and patterns that exist at size, time and com-
plexity scales that are not available to human perception and action. Examples
include galaxies, gravitational waves, DNA, molecular forces, evolution, plate
tectonics, oscillating reactions, biological arms races, complex feedback loops etc.
These entities and patterns are described using abstract external representations,
such as equations, graphs, models, simulations, theories, etc., and experimentally
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investigated using complex and opaque instruments, which themselves embed
abstract concepts and mathematical models. Learning modern science (and tech-
nology) thus requires learning to:

(1) Imagine detailed mental models
(2) Transform external models and related representations
(3) Integrate the mental models and external models

These three skills form the core of Model-Based Reasoning (MBR), which is
now considered the dominant component of scientific reasoning (Hestenes 2011,
2013). Most discussions on MBR focuses on internal models, and not on external
models. Until recently, most discussions about MBR-based science discovery
(Nersessian 1999, 2010) and learning (Hestenes 2013; Lehrer and Schauble 2006)
did not critically examine the media on which the external model is based, par-
ticularly the role this factor plays in discovery and learning. This is because most
examined external models were based on static media (such as equations, graphs
and physical models), and MBR was analysed from the perspective of these static
media. Following this static media view, the knowledge encoded in external models
was considered persistent and available for examination and analysis.

The current widespread use of computational modeling requires changing these
static media assumptions, as computational models are both dynamic and opaque
(Chandrasekharan et al. 2012). Following the shift to computational modeling in
scientific practice, such models are now used in science education as well
(Wilensky and Reisman 2006). Given its unique properties, computational mod-
eling presents a novel variation of model-based reasoning (MBR), particularly
MBR based on dynamic and opaque models, and a new cognitive account of MBR
is needed to understand the nature of this practice and its implications. To develop
such an account, I first outline two cases where the building and use of computa-
tional models led to discoveries. A theoretical model of the cognitive and neural
mechanisms underlying such discoveries is then presented, based on the way the
body schema is extended during tool use. This account suggests that the process of
building the computational model gradually ‘incorporates’ the external model as a
part of the internal imagination system. A central feature of this incorporation
account is the critical role played by tacit and implicit reasoning.

2 The Nature of Computational Media

One way to understand the impact of science moving to new computational media
is to examine other such media transitions in history. A recent and central one is the
transition from orality to literacy. This shift, which emerged over 6000 years,
changed the nature of cognition. Ong (2013) examines the nature of this shift, and
highlights the following points:
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1. Oral cultures never “looked up” anything; they only used recall. Writing low-
ered the need for recall, as well as memory techniques that supported this
cognitive process (such as mnemonics, verse and rote learning).

2. Oral thought emphasized redundancy, as the spoken word does not persist.
Sparse, linear, analytic thought is thus a product of writing.

3. Oral thought was conservative, as society regarded highly those wise old men
and women who specialize in conserving knowledge. This conservation
emphasis inhibited intellectual experimentation (a central value of science).

4. Oral thought was close to the human lifeworld, as learning or knowing meant
achieving close, empathetic, communal identification with the known. Writing
created distance, separating the knower from the known. This set up conditions
for “objectivity”, in the sense of personal disengagement or distancing.

Taken together, this view suggests that writing is a critical factor that enabled the
development of science and its supporting values and practices. Hestenes (2011)
argues that science and mathematics was made possible by writing. Rotman (2008)
takes these points further, examining how the nature of writing is related to western
cultural notions of the Self, God, and the Platonic nature of mathematics. Also
worth noting is the key power shift associated with the move to writing, where the
value of chanting (in Sanskrit/Latin/Arabic) was eroded, paving the way to the
‘writing class’ replacing the ‘chanting class’. More broadly, writing enabled new
institutional mechanisms, such as land titles, paper contracts, written law and paper
money, which together made possible the economic framework within which sci-
ence functions. The current pedagogical and institutional mechanisms for educa-
tion, such as standardised curricula, lecture-driven classrooms, written-exams, and
certification, are also shaped by the nature of writing and print media.

Similar to writing and print media enabling and reshaping oral knowledge,
learning traditions and associated values, the rise of computing is leading to the
emergence of a powerful new media system that is inherently dynamic, interactive,
participatory and social—features not readily provided by static print media. These
powerful features of new computing media allow re-imagining current discovery
and learning practices, particularly model-based reasoning, and institutional
mechanisms related to science and science education. Similar to the shift to writing,
this move will bring in new value systems. This ongoing shift is widely understood
and acknowledged, but what is not clear is the direction of this rapidly unfolding
change. An analytic, particularly cognitive, understanding of this systemic shift is
critically needed, as this will help society adapt more quickly. This is all the more
important because the shift is happening in Internet time (*50 years), while the
shift to writing happened over thousands of years.

As a starting point for the analysis of how new media would change the science
and science education landscape, the following list captures some of the features
supported by print media (text and graphics) and new computational media. It is
worth noting that new computational media include text, which suggests that the
transition from print would be different from the shift from orality. Particularly,
print will not be replaced, but would be augmented.
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Print media New computational media

Static (i.e. does not move) Dynamic

Non-manipulable Manipulable and interactive

Individual focused Social

Removed from the world Can be hooked to the world

Linear navigation Multiple navigation paths and trajectories

Explicit encoding of knowledge Knowledge emerges from interaction

The following sections outline two cases studies and a theoretical model that could
help understand the nature of the shift in science to computational media, and how this
is changing model-based reasoning. The first section outlines how the building of a
computational model led to a remarkable discovery in an interdisciplinary lab. The
second section outlines the way basic science discoveries are made using new crowd
sourcing games in biology. The third section examines a theoretical model of the
possible cognitive/neural mechanisms involved in these two cases, and how inter-
acting with computational models and games could lead to scientific discoveries. The
final section examines the broader implications of this model, particularly one pos-
sible trajectory of change for science and science education.

3 Building to Discover

In the fields of biomedical engineering and systems biology, computational models
are built to develop insights into the behavior of complex biological systems. Based
on this understanding from modeling, new technologies are developed to control
biological systems, such as neuronal populations (Chandrasekharan 2009) and
metabolic pathways (Chandrasekharan and Nersessian 2015). In such cases, com-
putational models are built to understand highly non-linear systems that are too
complex to be modeled using traditional approaches based on equations and graphs.
Since the phenomena they model are highly complex and dynamic, the models are
highly complex and dynamic as well, which makes an explicit understanding of the
multiple interactions between different variables (usually above 10) not feasible.
However, fundamental discoveries about the natural phenomena have emerged
from such ‘opaque’ (Di Paolo et al. 2000) models and control systems have been
built based on this understanding (Lenhard 2006; Winsberg 2006). What is the
nature of model-based reasoning in such cases of discovery and innovation? I
briefly outline one such case of discovery below, see Chandrasekharan and
Nersessian (2015) for details.

Understanding metabolic pathways (a network of biochemical reactions) is a key
problem in systems biology, particularly when seeking to reengineer the pathways
to develop new organisms, such as plants that allow cheap production of biofuel.
One central problem in the production of biofuel is efficiently breaking down lignin,
the key biochemical in the plant cell wall. Developing genetically modified plants
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with lower amounts of lignin would lead to more efficient biofuel production.
Modeling would help in identifying systematic ways to lower lignin levels in plants.
In the case we report (Chandrasekharan and Nersessian 2015) G10, an electrical
engineer with no background in biochemistry, develops a model of lignin, in two
phases, first for poplar, then for alfalfa. Based on these models, he made a series of
modifications to the scientific understanding of the lignin pathway. One spectacular
finding stood out: The modeling showed G10 that the traditional pathway—used by
almost everyone in the field for 20 years—is incomplete, and an element (named X
by G10) outside the standard pathway has a significant regulatory effect on the
behavior of the lignin pathway.

G10’s collaborators found this proposal provocative, and did experiments to test
this proposal. The experiments identified a possible candidate metabolite that
played the specific roles X played in G10’s models. A paper outlining the modeling
and experimental results was published in a high-impact modeling journal, and the
paper was written jointly with the experimental collaborators. This result illustrates
clearly the ideal case of modeling—of the model making a significant experimental
prediction, which is then tested and validated by the experimentalists. It shows how
modeling can lead to discovery, and the value modeling can provide for
experimentalists.

Note that the original goal of the lignin project was tweaking a given pathway so
as to make lignin break down more readily for biofuel production, which is an
engineering goal. But G10 ended up changing the standardized pathway, the sci-
entific consensus on the mechanism underlying lignin production. This is a basic
biological science discovery, generated by an electrical engineer, based on a few
months of modeling. The remarkable discovery shows that the built external model
is not just a replica of an existing standardized structure (the pathway) for the
purpose of tweaking. The external model, and its building, is a mechanism that
affords discovering unknown features of the pathway. Approaching this discovery
event from the point of view of understanding the role of computational models,
and more broadly external representations, in science cognition, a key question is:
What are the cognitive changes involved in building the external simulation model,
and how could these changes lead up to the discovery?

We propose (see Chandrasekharan and Nersessian 2015 for details) that the key
cognitive change is that within the course of many iterations of model building and
simulation, the external model gradually becomes coupled with the modeler’s inner
mental system, particularly his imagination (simulative mental model) of the phe-
nomena he is modeling. Based on this coupling, the modeler explores different
scenarios. The building process thus slowly creates an “external imagination” that is
closely coupled to the modeler’s imagination system. This coupling allows “what
if” questions in the mind of the modeler to be turned into detailed, and close to
actual, explorations of the system.

It is important to note that the model acquires this external imagination role only
in a gradual manner, through its incrementally acquired ability to enact the behavior
of the system that it is modeling. As it is built over many iterations (such as the first
poplar model), using many data sets, the model’s output/behavior comes to parallel
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the pathway’s dynamics. Each replication of experimental results by the model adds
data, and by proxy, real-world complexity, to the model, and this process continues
until the model fits all available experimental data well. At this point, the model can
enact the behavior of the real system—the pathway that is being examined—and
thus support detailed “what if” explorations that are not possible to do in the mind
alone (see also Kirsh 2010) or in experiments. Importantly, the model’s ability to
enact the real system behavior is a very complex judgment made by the modeler,
based on a large number of iterations, where a range of factors, such as sensitivity,
stability, consistency, computational complexity, nature of pathway, and so on are
explored. The gradual confidence in the model is thus a complex intuition about its
overall performance, emerging over a long series of interactions and revisions, and
does not depend just on data fitting, even though fitting is the most critical process
leading to this judgment.

As the enaction ability of the model develops gradually through the building
process, the model starts making manifest many behaviors the modeler might have
only imagined previously. But, the model goes further, as it also makes visible
many details of the system’s behavior, which the modeler could not imagine (Kirsh
2010) because of the fine grain and complexity of these details. The gradual process
of building creates a close coupling between the model and the modeler’s imagi-
nation, with each influencing the other. The computational model now works as an
external component of the imagination system. This coupling significantly enhances
the researcher’s natural capacity for simulative model-based reasoning
(Chandrasekharan 2009; Chandrasekharan et al. 2012; Nersessian 2010), particu-
larly in the following ways:

1. It allows running many more simulations, with many variables at gradients not
perceivable or manipulable by the mind (say 0025 of metabolites a and b).
These can then be compared and contrasted, which would be difficult to do in
the mind.

2. It allows testing what-if scenarios that are impossible to do in the researcher’s
mind. Such as, what would happen if I change variable 1 and 2 downwards,
switch off 6 and 21, and raise 7 and 11 with a time lag between 16 and 19?

3. It allows stopping the simulation in between and checking its state. It also allows
tracking the simulation’s states at every time point and, if something desirable is
seen, tweaking the variables to get that effect more often and consistently. This
“reverse simulation” is impossible to do in the mind or in experiments.

4. It allows taking apart different parts of the system as modules, simulating them,
and putting them together in different combinations.

5. It allows changing the time at which some in-between process kicks in (say,
making it start earlier or later), and this can be done for many processes, which
is very difficult to do in the mind or in experiments.

6. It exposes the modeler to system-level behavior that experimenters would never
encounter, as most of the above complex manipulations are not possible in
experiments.
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The process of building this distributed model-based reasoning system com-
prising researcher(s) and model leads to the creation of new or enhanced cognitive
capacities. We thus propose an “incorporation” account of how computational
models leads to discovery (see Chandrasekharan and Nersessian 2015), where the
building process leads to two kinds of integration. First, incorporation of real-world
data into the model, which allows the model to enact the behavior of the system it
parallels. Second, incorporation of the model as part of the imagination system,
such that imagined scenarios are tried out in the model, and the results are inte-
grated into the internal model of the system the model parallels. This notion of
incorporation is novel, and the cognitive mechanisms involved in this process
would be wider than just perception, and would involve cognitive systems relating
to the processing and understanding of motor control and tool use (see
Chandrasekharan 2014). The possible cognitive/neural basis of incorporation is
examined in the theoretical model that follows after the next section.

4 Building with Games

A second example of how new computational representations are radically
changing the way scientific knowledge is generated, most notably in the biological
sciences and bioengineering, is the case of Foldit, a video game (built on top of a
computational model) that allows novel protein-folds to be designed by web-based
groups of people not formally trained in biochemistry. Using Foldit, a 13-year-old
player (Aristides Poehlman) designed protein folds that were judged better than the
best biochemists’ folds in CASP (Critical Assessment of Techniques for Protein
Structure Prediction), the top international competition on protein-folding
(Bohannon 2009). This remarkable result provides an interesting cognitive
insight: the process of building new protein folds, using the video game interface,
allowed the novice player to implicitly develop an accurate/veridical sense of the
mechanics and dynamics of the protein folding problem. In this paper, I provide
details of this process more generally, and develop a theoretical account of how
discoveries could emerge from building.

The approach of ‘crowd sourcing’ difficult scientific problems to novices using
novel interfaces is now widely accepted, especially after Nature published a paper
(Cooper et al. 2010) where roughly 200,000 Foldit players were included as
authors. The paper proposed that harnessing people’s implicit spatial reasoning
abilities using such model-based games could be a new method to solve challenging
scientific problems. This proposal is now confirmed, with Foldit players making
some remarkable discoveries, including building the structure of a protein causing
aids in rhesus monkeys, which was an unresolved problem for 15 years (Khatib
et al. 2011). The game is currently being refined to support the development of new
drugs by the players. A spin-off game from Foldit, EteRNA, allows players to build
RNA folds, and every week the most promising folds from the gamers are syn-
thesized by a Stanford lab. The synthesis results are then fed back to the gamers,
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who use these real-world results to improve their designs. This closed loop building
process has led to the gamers discovering fundamental design principles underlying
RNA structure (Lee et al. 2014; Koerner 2012). Other similar crowd sourcing
games include Phylo (helps optimize DNA sequences) Eyewire (helps map 3D
structure of neurons). Eyewire recently helped answer some basic research ques-
tions about the way retinal cells detect motion (Kim et al. 2014).

These games mark an important shift in the direction of knowledge flow in
science, which has traditionally been from implicit to explicit. For instance, in many
areas of biology, the effort is to capture implicit procedural knowledge (such as
flight patterns and navigation of birds) in explicit declarative terms (such as aero-
dynamics and signaling). In physics, procedural knowledge (such as the qualitative
understanding of force) is considered to lead to misconceptions, and declarative
knowledge (such as Newton’s Laws) is used to explain many aspects of phe-
nomenal experience. Given this procedural-to-declarative trajectory of scientific
knowledge, the case of Foldit and similar games marks a new approach to dis-
covering scientific knowledge, as such cases re-represent declarative knowledge
using computational models and a manipulable interface, so that naive participants
can use their procedural knowledge to build up novel patterns. At the heart of such
games and other similar digital media for discovery is a re-representation—con-
verting explicit conceptual knowledge, developed by science (structure of protein,
possible folds, hydrophobic/hydrophilic interactions etc.) to build a control inter-
face that can be manipulated using a set of actions. This interface allows building of
new representations by novices, using their implicit spatial knowledge. These
games thus present a fundamental shift in the practice of science, particularly an
acknowledgment of the role played by tacit/implicit sensorimotor processes in
scientific cognition (Polanyi 1958, 1966). The success of this approach suggests
that there is a close connection between procedural and declarative knowledge.

This is a radical epistemic shift, and it is driven by two irreversible factors. One
is the focus on understanding interdisciplinary problems such as climate change,
where the phenomena under investigation are spread across many time-scales and
spatial levels, and complex feedback loops are standard features of the domain.
Existing theory and automated methods are not able to solve the multi-scale
combinatorial problems that emerge in such areas. It is also possible that in these
domains, as von Neumann (1951) observed, the phenomena are the simplest
descriptions possible, and any good model would need to be more complex than the
phenomena. A second factor is the emergence of ‘Big Data’, where petabytes of
data are generated routinely in labs, particularly in biological sciences. It is not
possible to analyze this avalanche of data without computational models and
methods, which themselves fail to work for many problems. A good example is the
classification of galaxies using data from the Hubble space telescope, a difficult
problem that led to the development of Galaxy Zoo, the first effort to crowd-source
science. This web-based citizen-science project has led to at least 30 peer-reviewed
papers, and a new astronomical object (Hanny’sVoorwerp) named after the Dutch
schoolteacher who identified it.

478 S. Chandrasekharan

sanjay@hbcse.tifr.res.in



The crowd sourcing approach to scientific problem-solving is new, but the idea
of using the human sensorimotor system to detect patterns, particularly in dynamic
data generated by computational models, has been applied right from the beginning
of computational modeling. Entire methodologies, disciplines, and phenomena
challenging existing models have been built just from visualized patterns on
computer screens. These include Complexity Theory (Langton 1984, 1990),
Artificial Life (Reynolds 1987; Sims 1994), models of plant growth (Prusinkiewicz
et al. 1988; Runions et al. 2005), computational bio-chemistry (Banzhaf 1994;
Edwards et al. 1998), computational nanotechnology (reported in Lenhard 2004;
Winsberg 2006), and climate change (Schneider 2012). All these novel areas of
exploration are based on visualizing data from computational models. Apart from
the visual modality, protein structure has been generated as music (Dunn and Clark
1999), and scanning microscope output has been used to generate haptic feedback
(Sincell 2000).

This approach to making scientific discoveries, by coupling the sensorimotor
systems of a crowd of novice humans to data embedded in novel computational
media, raises a number of questions about MBR and cognition. Particularly, what
cognitive mechanisms mediate the re-representation (and back) of scientific
knowledge as manipulable on-screen structures? What is the relationship between
declarative and procedural knowledge, such that this conversion is possible and
new discoveries could emerge from this conversion process? At a more applied
level, how could the visual and tactile manipulation of model elements on screen,
by groups of non-scientists, quickly lead them to build valid structures representing
imperceptible molecular entities they have never encountered, especially structures
that have eluded practicing senior scientists for many years? What cognitive and
biological mechanisms support this manipulation-based discovery process? How
can these mechanisms be harnessed better, to develop other collaborative
games/interfaces that address more complex and abstract scientific and engineering
problems with wider applicability?

Answering these questions is critical for practicing as well as learning this new
form of science and engineering. To address these questions, we require a general
theoretical account that captures how discoveries could emerge from the building of
new computational representations, particularly computational models, and
re-representation of data from these models.

In the following section, I propose a novel theoretical account of how building
and using such computational models could help in making new discoveries. This
account extends the incorporation account sketched in the G10 case above, pro-
viding a specific model of the cognitive/neural mechanisms at work in the process
of incorporation.
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5 Incorporation: The Biological Mechanisms

Since the above cases show how novices can make discoveries in complex scientific
domains by building computational structures, the mechanism underlying such dis-
coveries cannot be domain-knowledge based. The computational model is helping the
modelers extend their imagination to an external structure in the world, where
manipulations can be tried out. The results from these manipulation are coupled
seamlessly with the internal imagination system. What cognitive/neural mechanism
makes this seamless coupling possible? I suggest that this is made possible by a
version of the mechanism that extends the body schema during the use of tools.

A number of studies in monkeys have shown how the body schema is extended
to incorporate external objects, particularly tools (for a review, see Maravita and
Iriki 2004). One influential study (Irikiet al. 1996) examined the firing of bimodal
neurons before and after a monkey learned to use a stick to gather food. Bimodal
neurons in the intra-parietal cortex respond to both somato-sensory and visual input
on or near the hand. That is, the bimodal neurons coding for the hand area will fire
when the hand is touched, as well as when a light is flashed on the hand.
Interestingly, this firing happens when the light is flashed not just on the hand itself,
but also in the space close to the hand (“peripersonal space”), indicating that the
neurons code for the space of possible activity, rather than just the hand. Iriki et al.
examined whether this firing pattern changed when the monkey started using a stick
as a tool. This investigation was done in three phases (see top panels, Fig. 1,
adapted from Maravita and Iriki 2004).

In the first phase, there was no stick and the light was flashed on and near the
hand, and the bimodal neuron fired. In the second phase, the monkey passively held

Fig. 1 Monkey with electrodes embedded in the intra-parietal cortex doing the tool task. Top
panels show the three phases on the task, and how the per-personal space changes. The bottom
panel shows the way the action-space of the monkey changes
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the stick, and the investigators flashed the light near the monkey’s hand, as well as
at the end of the stick. The bimodal neuron fired only when the light was flashed
near the hand. In the third phase, the monkey used the stick to retrieve food from a
location that was not reachable by its hand. Immediately after this intentional
action, the investigator flashed the light on the hand as well as at the end of the
stick. The bimodal neuron now fired for light flashes near the hand as well as at the
end of the stick, showing that the peripersonal space (the area of possible activity
coded for by the neuron) had been extended to include the area covered by the stick
(bottom panels, Fig. 1). The intentional action led to the stick being incorporated
into the body, and the monkey’s peripersonal space (possible activity space) now
extended to the entire area, and objects, reachable by the stick. I will term this
“active” incorporation, as the extension occurs only through intentional action. This
extension of peripersonal space is important, as it shows that such incorporation is
not just about adding an external entity to the body schema. Incorporation expands
the range of possible activities the monkey can do—in terms of location of activity,
other entities involved, nature of activity, the number of activities, and the per-
mutations and combinations of activities. This expanded range also extends the
monkey’s understanding/knowledge of the stick, as well as the space around it,
which is now understood in relation to the stick. The monkey’s cognitive capacities
are thereby expanded. Similar incorporation of external entities into the body
schema has been shown with humans as well (Farne et al. 2005).

An interesting variation of this incorporation effect (which I term “passive”
incorporation) is the rubber hand illusion (Botvinick and Cohen 1998). In this
experiment, one hand of the participant is placed on a tabletop, and is visible to the
participant. The other hand is placed on the participant’s knee, under the table, and is
not visible to the participant. The experimenter then places a rubber hand on the
tabletop, above and parallel to the unseen hand, and next to the seen hand. The wrist
end of this rubber hand is covered with a cloth. The experimenter then touches the
unseen hand (under the table) and the seen rubber hand, synchronously, using a
brush. After some time, the participant feels the rubber hand as part of his body, and
he feels physically threatened if a knife is brought near the rubber hand. This feeling
of threat is indicated by a raised galvanic skin response. When the stroking of the
unseen hand and the rubber hand is asynchronous, the participant does not report
feeling the illusion, and the heightened skin response does not occur. The RHI has
recently been extended to induce the feeling of having three arms (Guterstam et al.
2011), and also an “invisible hand effect” when a hand is felt when empty space in
front of the participant is stroked in synchrony (Guterstam et al. 2013).

The incorporation of the rubber hand into the body is similar to the incorporation
of the tool by the monkey. But it is also different, as the incorporation occurs not
through intentional action, but through a dissociation of visual and tactile inputs.
One way to understand the relation between passive and active incorporation is to
consider the passive as a faint case of the active, where the perceptual effect appears
similar to the effect of using a tool, even though no intentional action is executed. In
the tool case, the tactile input is seen and felt in a distant manner, but it occurs in
synchrony with the visual input of the tool moving. This synchrony could be one of
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the factors that lead to the tool being incorporated as part of the body schema. In the
passive case, a similar synchrony is detected, with no tool present. The brain then
“fills-in” the missing tool, by incorporating the locus of the synchrony (the external
entity) into the body schema, even though there is no intentional action executed
with the entity. Recent results show that such passive incorporation also has cog-
nitive effects. For instance, when asked to bisect a horizontal line midway, most
people show a leftward bias (pseudoneglect), which is attributed to the dominance
of the right brain hemisphere. This bias is reduced after the rubber hand illusion.
This compensatory effect is specific to individuals who report having vividly
experienced the illusion (high responders) as opposed to individuals who do not
(low responders). Also, pseudoneglect was eliminated only after RHI application to
the left hand (Ocklenburg et al. 2012). This suggests that passive incorporation
changes the nature of actions that follow, and the cognitive events related to such
actions. The extension of the peripersonal space after such incorporation has not
been investigated, though the following study seems to suggest that such a change
could occur following passive incorporation.

In a further variation of the RHI effect, a remarkable new study has shown that a
similar synchronous splitting of the visual and tactile inputs can lead to the feeling of
being out of one’s body, and owning another body of a different size (van der Hoort
et al. 2011). In this experiment, participants lie down, with their head looking toward
their feet, while wearing a virtual reality headset that shows the legs of a mannequin
lying next to them. An experimenter then simultaneously strokes the participant’s
legs, as well as the legs of the mannequin, with a rod. This simple manipulation
creates a sensory dissociation similar to the RHI: the stroking is felt in one’s own leg,
but it is seen as happening synchronously in the mannequin’s leg. Similar to the RHI,
the synchronous dissociation creates the feeling that the feet of the mannequin are
the participant’s own. Interestingly, the participants then feel like they themselves
are the size of the mannequin, and they feel threatened if the mannequin is attacked.
This ‘out-of-body’ experience has remarkable cognitive effects. If the incorporated
mannequin is small, the subjects feel short, and when asked to use their hands to
judge the size of small boxes shown to them, participants judge the boxes as quite
big. Conversely, if the incorporated mannequin is huge, participants feel they
themselves are huge, and thus judge really large boxes as small.

Extending this effect further, a similar synchronous dissociation has been shown
to create the feeling of being out of one’s own body, and being in a point of space
outside. This happens when the participant feels the tactile input in her chest, but
sees the visual input in a point in space behind her, an illusion achieved using
virtual reality goggles. This leads to the incorporation of this (empty) space into the
body schema, and the shifting of the visual perspective to that point in space. This
effect is quite remarkable, as it shows that the perceptual synchrony can lead to a
form of idealized incorporation, where empty space is incorporated into the body
(similar to the invisible hand illusion), by shifting the visual perspective to that
point in space. This incorporation also has cognitive effects, such as a different
judgment of the distance one needs to walk to reach a target (Ehrsson 2007;
Lenggenhager et al. 2007). This experiment shows passive incorporation at the
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level of the whole body, and this type of incorporation seems to alter the nature of
cognitive activities performed by the subject, and the space and perspective asso-
ciated with these cognitive activities. How this global-level incorporation affects
possible actions/activities and extension of peripersonal space is not clear, as this
has not been explored yet.

These experiments indicate that: (1) Objects are incorporated into the body
schema when used as tools, (2) Objects resembling body parts are easily incor-
porated into the body schema through a synchronous dissociation mechanism, and
such incorporation has cognitive effects, (3) Space outside the body can easily be
incorporated into the body schema, and this leads to cognitive effects. These results
show the possibility of extending your body schema to incorporate external entities
and perspectives (and thus knowing them by participation), and how such incor-
poration can lead to cognitive changes. These are early and indicative results, but
taken together with the tool-use case, and the ease with which incorporation occurs,
they suggest that such incorporation is possible, and it is very common. The
cognitive effects illustrated by these experiments also suggest that such incorpo-
ration of external entities and space into the body schema could be a mechanism
through which we understand/know external objects—via the new activities, per-
spectives, or the different ways of doing/examining old activities, which the objects
and their features make possible.

The incorporation account provides a new way of understanding how
model-based reasoning based on computational models lead to discovery, partic-
ularly discovery based on games such as Foldit. Essentially, scientific discovery
games work by re-representing conceptual knowledge as a control interface, where
global knowledge of the system can be gained through actions on models and
feedback from these actions. The above account of how the body schema is
extended to incorporate external tools and artifacts suggests the underlying mech-
anism in the case of Foldit and similar games could be a similar gradual integration
of the internal imagination process and the external model, and the implicit
understanding of the system’s behavior that emerges from this incorporation.

Further, this account could be extended to model-based-learning, where con-
ceptual knowledge is gained through similar actions and feedback, via the manip-
ulation of models and physical artifacts. In mathematics and science education,
manipulatives and models are commonly used to improve learning of abstract
concepts, such as fraction concepts and area concepts, and unperceivable patterns,
such as DNA structure and stereochemistry. More broadly, there are standard
approaches to learning based on actions and feedback, such as learning-by-doing
and activity-based-learning, and software platforms that promote action-based
learning, such as Geogebra, Netlogo (Wilensky and Reisman 2006), and Kill Math,
which seeks to promote learning of math and science concepts through manipula-
tions of objects and numbers on screen. The incorporation account of model-based
learning allows understanding learning situations involving manipulable models and
novel digital media (Landy et al. 2014; Landy and Goldstone 2009; Majumdar et al.
2014; Marghetis and Nunez 2013; Ottmar et al. 2012), and also extend learning
frameworks based on modeling (such as Modeling Theory, Hestenes 2006).
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6 Beyond Telling

Computational models are complex, opaque and highly dynamic entities that embed
experimental data and theoretical concepts. The two cases discussed above suggests
that discoveries made by novices using such models significantly exploit implicit
knowledge, of patterns (case 1) and visuo-spatial structure (case 2). Understanding
model-based reasoning using computational models thus require an account where
implicit knowledge plays a significant role. The incorporation account
(Chandrasekharan 2009; Chandrasekharan and Nersessian, 2015), proposes such a
theoretical model, where discoveries based on computational models are based on
the gradual development of a coupling between the internal imagination system and
the external model. This coupling emerges through the process of building the
model and running thousands of simulations and variations. I propose here that the
cognitive mechanism underlying incorporation is a reuse/extension of the mecha-
nism involved in the incorporation of tools into the body schema (also see
Chandrasekharan 2014).

Since computational models and media are here to stay, what broader implica-
tions for science practice and science education are offered by these case studies and
the incorporation account? I explore four implications below:
1. From a cognition perspective, a key implication is the wide acceptance of

implicit knowledge as a critical component of model-based reasoning and dis-
covery. Computational modelers, in combination with their models, know more
than they can tell (Polanyi 1958). Related to this is a focus on the process of
building the model, and how building contributes to incorporation, and thereby,
discoveries. The building process is poorly understood, and most studies of
modeling ignore this critical component, particularly when building is done by
communities of modelers, as in the case of Foldit. This three-fold combination,
of implicit processes, building, and incorporation, could eventually lead to an
embodied cognition account of MBR.

2. This shift in scientific practice will be reflected in science education, with the two
dominant modes of training in science, apprenticeship and classroom training
(which Bruner calls “showing” and “telling” modes), augmented by a modeling-
based training. This new “enactive”mode is more social, participatory (as systems
such as Foldit allow students to work with real problems) and decentralized than
the currently dominant “telling” mode practiced in classrooms. While less
embodied than the “showing” mode of learning in research laboratories, the
enactive mode is more powerful in terms of exploration. The currently domi-
nant telling mode is both enabled by and built around static media such as text and
diagrams, and the dynamic nature of new computational media, particularly
simulations and visualisations, is already disrupting science education based on
this mode.

3. Computational models are constantly revised and expanded, through the
embedding of experimental data and theoretical developments. Coupled with
their role as generators of counterfactual scenarios and innovations,
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computational models develop a complex and constantly changing relationship
with the external world. Their correspondence with the real world is achieved,
contingent, and constantly evolving. The central role played by computational
models in contemporary practice suggests that this nature—achieved, contingent,
and constantly evolving—will reshape our understanding of the nature of sci-
entific knowledge, towards science-as-engineered-artifact that becomes part of
reality and changes it, rather than (just) the view that science accurately captures
pre-existing reality.

4. A central feature of computational models is their extreme ability to generate
counterfactual scenarios and mechanisms. This feature makes them ideal for
developing new technologies and mechanisms, and this makes computational
models one of the key structures supporting the ongoing blending of science and
engineering into engineering sciences, particularly in biology. The acceleration of
this blending, and the blending of the related distinction between discovery and
innovation, is a key practice implication of the shift to computational models and
media.

7 Conclusion

The shift from the traditional static media such as text and graphics to computa-
tional modeling is set to change the practices of science and science education,
particularly model-based reasoning based on external models. I examined two
instances of the use of computational modeling to make key discoveries, and
proposed an incorporation account of how building these models lead to scientific
discovery. This incorporation account was extended further to propose an under-
lying cognitive mechanism, based on the way the body schema is extended during
tool use. I then examined some of the major implications of this account. This
account just begins the process of understanding the systemic shift to computational
media and its implications for science and science education. A lot more needs to
done before we can get a good grasp of the nature of this shift, particularly to design
institutional structures around computational media.

References

Banzhaf, W. (1994). Self-organization in a system of binary strings. In R. Brooks & P. Maes
(Eds.), Artificial life IV (pp. 109–119). Cambridge, MA: MIT Press.

Bohannon, J. (2009). Gamers unravel the secret life of protein. Wired Magazine, 17(05), 17–05.
Botvinick, M., & Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391, 756.
Chandrasekharan, S. (2009). Building to discover: A common coding model. Cognitive Science,

33(6), 1059–1086.

Beyond Telling: Where New Computational Media … 485

sanjay@hbcse.tifr.res.in



Chandrasekharan, S. (2014). Becoming knowledge: Cognitive and neural mechanisms that support
scientific intuition. In L. M. Osbeck & B. S. Held (Eds.), Rational intuition: Philosophical
roots, scientific investigations (pp. 307–337). New York: Cambridge University Press.

Chandrasekharan, S., & Nersessian, N. J. (2015). Building cognition: The construction of
computational representations for scientific discovery. Cognitive Science, 39(8), 1727–1763.

Chandrasekharan, S., Nersessian, N., & Subramanian, V. (2012). Computational modeling: Is this
the end of thought experiments in science? Thought Experiments in Philosophy, Science, and
the Arts, 11, 239.

Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., & Popović, Z. (2010).
Predicting protein structures with a multiplayer online game. Nature, 466(7307), 756–760.

Di Paolo, E. A., Noble, J., & Bullock, S. (2000). Simulation models as opaque thought
experiments. In artificial life VII: The Seventh International Conference on the Simulation and
Synthesis of Living Systems (pp. 497–506).

Dunn, J., & Clark, M. (1999). Life music: The sonification of proteins. Leonardo, 32(1), 25–32.
Edwards, L., Peng, Y., & Reggia, J. (1998). Computational models for the formation of protocell

structure. Artificial Life, 4(1), 61–77.
Ehrsson, H. H. (2007). The experimental induction of out-of-body experiences. Science, 317, 1048.
Farne, A., Iriki, A., & Ladavas, E. (2005). Shaping multisensory action-space with tools: Evidence

from patients with cross-modal extinction. Neuropsychologia, 43, 238–248.
Guterstam, A., Gentile, G., & Ehrsson, H. H. (2013). The invisible hand illusion: Multisensory

integration leads to the embodiment of a discrete volume of empty space. Journal of Cognitive
Neuroscience, 25(7), 1078–1099.

Guterstam, A., Petkova, V. I., & Ehrsson, H. H. (2011). The illusion of owning a third arm. PLoS
One, 6(2), e1720.

Hestenes, D. (2006). Notes for a modeling theory. In E. van den Berg, T. Ellermeijer & O. Slooten
(Eds.), Proceedings of the 2006 GIREP conference: Modeling in physics and physics education
(Vol. 31, p. 27). Amsterdam: University of Amsterdam.

Hestenes, D. (2011). Notes for a modeling theory. In Proceedings of the 2006 GIREP Conference:
Modeling in Physics and Physics Education. (Vol. 31).

Hestenes, D. (2013). Remodeling science education. European Journal of Science and
Mathematics Education, 1(1), 2013.

Iriki, A., Tanaka, M., & Iwamura, Y. (1996). Coding of modified body schema during tool use by
macaque postcentral neurons. NeuroReport, 7, 2325–2330.

Khatib, F., DiMaio, F., Foldit Contenders Group, Foldit Void Crushers Group, Cooper, S.,
Kazmierczyk, M., Gilski, M., Krzywda, S., Zabranska, H., Pichova, I., Thompson, J., Popovic,
Z., Jaskolski, M., Baker, D. (2011). Crystal structure of a monomeric retroviral protease solved
by protein folding game players. Nature Structural and Molecular Biology, 18, 1175–1177.

Kim, J. S., Greene, M. J., Zlateski, A., Lee, K., Richardson, M., Turaga, S. C., et al. (2014).
Space-time wiring specificity supports direction selectivity in the retina. Nature, 509(7500),
331–336.

Kirsh, D. (2010). Thinking with external representations. AI and Society, 25(4), 441–454.
Koerner, B. I. (2012). New videogame lets amateur researchers mess with RNA. Wired Science.
Landy, D. H., & Goldstone, R. L. (2009). How much of symbolic manipulation is just symbol

pushing? In Proceedings of the Thirty-First Annual Conference of the Cognitive Science
Society, (pp. 1072–1077). Amsterdam, Netherlands: Cognitive Science Society.

Landy, D., Allen, C., & Zednik, C. (2014). A perceptual account of symbolic reasoning. Frontiers
in Psychology, 5.

Langton, C. (1990). Computation at the edge of chaos: Phase transitions and emergent
computation. Physica D: Nonlinear Phenomena, 42, 12–37.

Langton, C. G. (1984). Self-reproduction in cellular automata. Physica D: Nonlinear Phenomena,
10, 135–144.

Lee, J., Kladwang, W., Lee, M., Cantu, D., Azizyan, M., Kim, H., et al. (2014). RNA design rules
from a massive open laboratory. Proceedings of the National Academy of Sciences, 111(6),
2122–2127.

486 S. Chandrasekharan

sanjay@hbcse.tifr.res.in



Lehrer, R., Horvath, J., Schauble, L. (1994). Developing model-based reasoning, Interactive
Learning Environments, 4(3), 218–232.

Lehrer, R., Schauble, L. (2006). Cultivating model-based reasoning in science education. In
Sawyer, R. Keith (Eds.), The Cambridge handbook of the learning sciences, (pp. 371–387).
NY, US: Cambridge University Press, xix, 627 pp.

Lenggenhager, B., Tadi, T., Metzinger, T., & Blanke, O. (2007). Video ergo sum: Manipulating
bodily self-consciouness. Science, 317, 1096–1099.

Lenhard, J. (2004). Surprised by a nanowire: Simulation, control, and understanding. Philosophy
of Science, 73, 605–616.

Lenhard, J. (2006). Surprised by a nanowire: Simulation, control, and understanding. Philosophy
of Science, 73(5), 605–616.

Majumdar, R., Kothiyal, A., Pande, P., Agarwal, H., Ranka, A., Murthy, S., et al. (2014). The
enactive equation: Exploring how multiple external representations are integrated, using a fully
controllable interface and eye-tracking. In Proceedings of the Sixth International Conference
on Technology for Education (T4E), IEEE.

Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences, 8(2),
79–86.

Marghetis, T., & Núnez, R. (2013). The motion behind the symbols: A vital role for dynamism in
the conceptualization of limits and continuity in expert mathematics. Topics in cognitive
science, 5(2), 299–316.

Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In Model-based reasoning
in scientific discovery (pp. 5–22). US: Springer.

Nersessian, N. J. (2010). Creating scientific concepts. MIT press.
Ocklenburg, S., Peterburs, J., Rüther, N., & Güntürkün, O. (2012). The rubber hand illusion

modulates pseudoneglect. Neuroscience Letters, 523(2), 158–161.
Ong, W. J. (2013). Orality and literacy. Routledge.
Ottmar, E., Landy, D., & Goldstone, R. L. (2012). Teaching the perceptual structure of algebraic

expressions: Preliminary findings from the pushing symbols intervention. In The Proceedings
of the Thirty-Fourth Annual Conference of the Cognitive Science Society (pp. 2156–2161).

Polanyi, M. (1958). Personal knowledge: Towards a post-critical philosophy. Chicago: University
of Chicago Press.

Polanyi, M. (1966). The tacit dimension. London: Routledge.
Prusinkiewicz, P., Lindenmayer, A., & Hanan, J. (1988). Developmental models of herbaceous

plants for computer imagery purposes. Computer Graphics, 22(4), 141–150.
Reynolds, C. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer

Graphics, 21(4), 25–34.
Rotman, B. (2008). Becoming beside ourselves: The alphabet, ghosts, and distributed human

being. Duke University Press.
Runions, A., Fuhrer, M., Lane, B., Federl, P., Rollang-Lagan, A., & Prusinkiewicz, P. (2005).

Modeling and visualization of leaf venation patterns. ACM Transactions on Graphics, 24(3),
702–711.

Schneider, B. (2012). Climate model simulation visualization from a visual studies perspective.
Wiley Interdisciplinary Reviews: Climate change, 3(2), 185–193.

Sims, K. (1994). Evolving virtual creatures. Computer Graphics, 8, 15–22.
Sincell, M. (2000). NanoManipulator lets chemists go mano a mano with molecules. Science, 290, 1530.
van der Hoort, B., Guterstam, A., & Ehrsson, H. (2011). Being barbie: The size of one’s own body

determines the perceived size of the world. PLoS One, 6(5), e20195.
Von Neumann, J. (1951). The general and logical theory of automata. Cerebral mechanisms in

behavior, 1, 41.
Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology

through constructing and testing computational theories—An embodied modeling approach.
Cognition and instruction, 24(2), 171–209.

Winsberg, E. (2006). Models of success versus the success of models: Reliability without truth.
Synthese, 152(1), 1–19.

Beyond Telling: Where New Computational Media … 487

sanjay@hbcse.tifr.res.in


