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The Origin of Epistemic Structures and 

Proto-Representations

Sanjay Chandrasekharan, Terrence C. Stewart 
Institute of Cognitive Science, Carleton University, Ottawa, Canada

Organisms across species use the strategy of generating structures in their environment to lower cog-

nitive complexity. Examples include pheromones, markers, color codes, etc. We provide a model of

how such structures originate, and present a simulation where organisms with only reactive behavior

learn, within their lifetime, to add such structures to their world to lower cognitive load. This implemen-

tation is then extended to show that the same underlying process could generate internal traces of the

world (memories) in an internal environment. This model provides a novel account of the origin of

internal representations. Further, as both external and internal traces are generated using the same

mechanism, the model shows how an extended mind could be implemented. Also, as the stored inter-

nal traces develop entirely out of actions, these action components could be activated implicitly. This

feature explains the origin of enactable and action-oriented mental content, suggested by recent

experiments.

Keywords distributed cognition · epistemic structure · extended mind · representation · simulation

theory · situated cognition

1 Introduction

Many organisms add stable structures to their environ-
ments to reduce cognitive complexity (minimize
search, inference, memory load, etc.), for themselves,
for others, or both. Wood mice (Apodemus sylvaticus)
distribute small objects, such as leaves or twigs, as
points of reference while foraging. Such way-marking
is exhibited even under laboratory conditions, using
plastic disks, and has been shown to diminish the likeli-
hood of losing interesting locations during foraging
(Stopka & MacDonald, 2003). Red foxes (Vulpes vul-
pes) use urine to mark food caches they have emptied.
This marking acts as a memory aid and helps them
avoid unnecessary search (Henry, 1977, reported in

Stopka & MacDonald, 2003). The male bower bird
builds colorful bowers (nest-like structures), which are
used by females to make mating decisions (Zahavi &
Zahavi, 1997). Ants drop pheromones to trace a path to
a food source. Many mammals mark their territories
(Bradbury & Vehrencamp, 1998). Bacterial colonies
use a strategy called quorum sensing to know that they
have reached critical mass (to attack, to emit light,
etc.). This strategy involves individual bacteria secret-
ing molecules known as auto-inducers into the envi-
ronment. The auto-inducers accumulate in the
environment, and when they reach a threshold, the col-
ony moves into action (Silberman, 2003). 

It is interesting to observe that such lowering of
cognitive load by “doping” the world is commonly
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reported in animals with smaller brains (such as insects
and rodents). In general, animals with large brains
(such as horses, elephants, monkeys, etc.) are not
known to exploit this strategy, perhaps because larger
brains constitute an increased reliance on internal traces
of the world. However, humans are an exception to this
possible trend of increasing reliance on internal traces.
We exploit both internal and external traces simultane-
ously. The list of epistemic structures used by humans
is almost endless: markers, color codes, page numbers,
credit ratings, stains, traces, badges, shelf-talkers, speed
bugs, road signs, post-it notes, etc.

The pervasiveness of such restructuring of the
world across species indicates that adding structures
to the world for “cognitive congeniality” is a basic
adaptive strategy (Kirsh, 1996). From here onwards,
we will call such stable organism-generated external
structures that lower cognitive load epistemic struc-
tures (ESs). The term is derived from the distinction
between epistemic and pragmatic action developed by
Kirsh and Maglio (1994). 

A significant chunk of the cognitive science liter-
ature on ESs is from the field of distributed cognition
(Hutchins, 1995a, 1995b; Kirsh, 1995, 1996). Kirsh
explores the structural and computational properties
of such structures, how they function, and how organ-
isms interact with such structures. Such run-time
interaction with external structures has been used to
argue the case for situated and distributed cognition
(i.e. the use of the environment as a cognitive resource
by the organism). In the extreme, this dependence has
been used to argue against the existence of representa-
tion-based (i.e. symbolic) cognition (Brooks, 1991).

We are interested in how organisms generate such
structures, which is the other half of the ES problem.
Generation is about internal mechanisms that enable
organisms to generate structures in the environment and
use them. Besides this focus on internal mechanisms that
could drive the generation of external structures, in this
article we present three novel approaches, as follows:

1. Traditionally, research on cognitive modifica-
tions to the environment has ignored animal
cases, focusing exclusively on human generation
of ESs (Kirsh, 1995). Animals do make modifica-
tions to their cognitive environments, and these
have been examined extensively under the rubric
of signaling. However, the research focus in sign-
aling is not cognitive complexity, but evolutionary

models and game theory models (Bradbury &
Vehrencamp, 1998). Similarly, recent work on
niche construction (Laland, Odling-Smee, &
Feldmann, 2000; Odling-Smee, Laland, & Feld-
mann, 2003) examines the construction of epis-
temic niches, but does not consider the cognitive
mechanisms that lead up to the generation of such
niches. In contrast, our analysis is based on the
cognitive advantage provided by these structures,
and we consider the human and animal cases to be
of a kind. We seek to develop an integrated and
evolutionarily plausible cognitive model of how
ESs arise, where the underlying mechanism is
similar in both human and non-human cases. In
this view, the distinction between generation by
humans and generation by non-human organisms
is one of complexity, and not of mechanism (for
details, see Chandrasekharan, 2005).

2. The exploitation of external structures has been
used to argue that the mind extends into the envi-
ronment (Clark & Chalmers, 1998). In a similar
vein, but more conservatively, Hutchins (1995a,
1995b) has argued that the study of external struc-
tures can provide insight into the development and
nature of internal representations, and cognition
itself. In the second half of the article, we develop
this claim beyond the descriptive level of interac-
tion used by distributed cognition, and present an
implemented model of how internal traces of the
world could originate in reactive agents (agents
who can only sense and act, they do no internal
processing) within lifetime, using the same under-
lying process that allow organisms to generate
external structures to reduce cognitive complexity.
This model integrates generation of external and
internal structures under a common mechanism,
and thus provides a clearer picture of how cogni-
tion could extend out into the world. As this imple-
mentation is based on reactive agents interacting
with an environment, and they develop the ability
to store useful internal traces of the environment,
this model also integrates the situated cognition
position with the symbolic cognition position, by
showing how useful internal traces of the world
could arise out of situated activity. The model also
presents a number of interesting characteristics of
such internally stored traces of the world.

3. The agents in our model develop internal traces of
the world entirely out of actions, and any represen-



Chandrasekharan & Stewart Origin of Epistemic Structures 331

tational content the traces possess consists of
action information. Such action-oriented content
offers the possibility of enaction or simulation.
This view of the origin of internal content from
actions provides support and evolutionary plausi-
bility for the Simulation theory of cognition (a cap-
ital S is used here to avoid confusion with
implemented simulations), which argues that cog-
nition involves a form of “virtual enaction” (Metz-
inger & Gallese, 2003; Svenson & Ziemke, 2004).
Further, our implementation offers a rudimentary
model of the character of such simulatable internal
traces of the world and how they could originate
out of actions, thus integrating Simulation models
with situated cognition models. 

The article is organized as follows. In Section 2 we con-
sider the generation of ESs. We provide a model and
implementation of how such external structures are
generated by non-human organisms. In Section 3 we
extend this model to the generation of internal traces of
the world. We develop an account and implementation
of how organisms could generate such internal struc-
tures to lower cognitive load. In Section 4 we address
the theoretical implications of this second (extended)
model for two wider issues in cognition (representation,
and the Simulation/enaction model of the mind). 

To make the article accessible to a wide audience,
we have simplified the description of our implementa-
tions in the main text. Most of the implementation
details are provided in the endnotes. For those inter-
ested in further details, the code for the two imple-
mentations (in Python) is publicly available.1 

2 Origin of Epistemic Structures

ESs can be classified into three types, based on whom
they are generated for (examples of each in brackets): 

1. structures generated for oneself (cache marking,
bookmarks);

2. structures generated for oneself and others (phe-
romones, color codes);

3. structures generated exclusively for others (warn-
ing smells, badges).

There are other ways to classify ESs (e.g. by function –
structures for mating, foraging, etc.), but the above
classification is more suited to the objective of this

article, which is to understand the mechanisms that
lead up to the generation of such structures. Besides
capturing the entire space of ESs generated, the above
classification also provides a good framework to
develop progressive models of ES generation – mov-
ing from structures generated for oneself to structures
generated exclusively for others.

A central feature of such structures is their task-
specificity (more broadly, function/goal-orientedness).
To illustrate this concept, consider the following exam-
ple. Think of a major soccer match in a large city, and
thousands of fans arriving in the city to watch (the
example is based loosely on the Paris World Cup).
The organizers put up large soccer balls on the streets
and junctions leading up to the venue. Fans would
then simply follow the balls to the game venue. Obvi-
ously, the ball reduces the fans’ cognitive load, but
how? To see how, we have to examine the condition
where big soccer balls do not exist to guide the fans. 

Imagine a soccer fan walking from her hotel to
the game venue. She makes iterated queries to the
world to find out her world state (e.g. what street is
this, and in which direction am I going?), and then
performs some internal processing on the information
gained through the queries. After every few set of iter-
ated queries and internal processing, she updates her
world state (I’m at point X) and internal state (now
searching for point Y), and this process continues
until she reaches her destination.

What changes when the ball is put up? The exist-
ence of the big soccer ball cuts out the iterated queries
and internal processing. These are replaced by a single
query for the ball, and its confirmation. The agent just
queries for the ball, and once a confirmation of its
presence comes in, she updates her internal state to
look for the next ball. The ball allows the agent to per-
form in a reactive, or almost-reactive mode (i.e. move
from perception to action directly). The key advantage
is that almost no (or significantly less) inference or
search is required, compared with the case where the
ball does not exist.

This happens because the ball is a task-specific
structure; it exists to direct soccer fans to the game
venue. Other structures, such as street names and
landmarks in a city, are function-neutral or task-
neutral structures. The fans have to access these task-
neutral structures and synthesize them to obtain the
task-specific output they want. Once the widely visi-
ble ball, a task-specific structure, exists in the world,
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they can use this structure directly, and cut out all the
synthesizing. (How the soccer fans manage to discover
the ball’s task-specificity is a separate and relevant
issue; see Chandrasekharan, 2005 for an account.) In
graph theoretic models (see Kirsh, 1996) such task-
specific structures work by collapsing longer paths in
a task-environment. Task-specificity is a common
property of all ESs found in nature, including pherom-
ones and markers. 

2.1 Tiredness Model of Epistemic Structure 
Generation

How are such task-specific structures that lower cog-
nitive complexity generated? In this article we con-
sider the case of non-human organisms such as ants,
wood mice and red foxes (for an account of the human
case, see Chandrasekharan, 2005). We first describe
our model in high-level terms, and then develop the
computational model. 

We make the following two assumptions.

1. Organisms sometimes generate random structures
in the environment (pheromones, urine, leaf piles)
as part of their everyday activity. 

2. Organisms can track their physical or cognitive
effort (i.e. they become tired), and they have a
bias to reduce physical or cognitive effort. We use
the terms cognitive load and energy load inter-
changeably to indicate this effort.2,3

Now, some of the randomly generated structures are
encountered while executing tasks such as foraging
and cache retrieval. In some random cases, actions
executed during these encounters make the task easier
for the organisms (following pheromones reduces
travel time, avoiding urine makes cache retrieval
faster, avoiding leaf piles reduces foraging effort).
That is, these random structures shorten paths in the
task environment in some random cases. Given the
postulated bias to avoid tiredness,2 these paths get
preference, and they are reinforced. As more structure
generation leads to more of these paths, structure gen-
eration behavior is also reinforced.

This high-level model gives us the outline for
building a computational model, where artificial
agents display the ability to learn to systematically
generate such cognitively3 congenial structures in
their environment.

2.2 Implementation

To test and investigate the above model of ES genera-
tion, a multi-agent simulation was implemented.
Multi-agent simulations typically consist of a number
of agents (usually reactive agents) that have the ability
to move around in an environment. The agents can
sense some events and objects in the environment, and
execute some actions that change the state of the envi-
ronment. Such simulations are an effective way of
understanding complex and dynamic agent–environ-
ment relationships (Seth, 2002), and have been used
extensively to study a diverse range of phenomena,
including honey-bee nest architectures (Camazine,
1991), ant foraging (Bonabeau, Dorigo, & Theraulaz,
1999), evolution of language (Kirby, 2002), human
mate-choice (Todd & Miller, 1999), and the develop-
ment of markets (Tesfatsion, 2002).

The task we have chosen is analogous to foraging
behavior (i.e. navigating from a home location to a
target location and back again). Our environment con-
sisted of a 30 × 30 toroidal (doughnut-shaped) grid-
world, with one 3 × 3 square patch representing the
agent’s home, and another representing the target.
This target can be thought of as a food source, to fit
with our analogy to foraging behavior. 

2.2.1 Agent Actions At any given time, an agent
can perform one of five possible actions. The first and
most basic of these is moving randomly. This consists
of going straight forward, or turning to the left or right
by 45° and then going forward. The agent does not
pick which of these three possibilities occurs (there is
a one-third chance of each).

In deciding the actions available to the agent, we
needed to postulate some basic facilities within each
agent. For our case, we felt it was reasonable to
assume that the agents could distinguish between their
home and their target, as we were interested in the ori-
gins of structure-generation behavior and not land-
mark-identification behavior. However, this ability to
distinguish target and home was provided in a limited
fashion, using two more actions. These were exactly
like the first action, but instead of moving randomly,
the agent could move towards whichever square was
sensed to be the most home-like (or the most target-
like). Initially, the only things in the environment that
are home-like or target-like are the home and the tar-
get themselves.
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One way to think about these actions is to con-
sider the pheromone-following ability of ants. Com-
mon models of ant foraging (e.g. Bonabeau et al.,
1999) postulate the automatic release of two pherom-
ones: a home pheromone and a food pheromone. The
ants go towards the home pheromone when they are
searching for their home, and they go towards the food
pheromone when foraging for food. This exactly
matches these two actions in our agents. The home
pheromone would be an example of a home-like struc-
ture in the ant environment.

The fourth and fifth possible actions provide for
the ability to generate these home-like and target-like
structures. In the standard ant models, this could be
thought of as the releasing of pheromones. However,
our simulation has a very key distinction: the ability to
modify the environment is something the agents can
do instead of moving around. That is, this generation
process requires time and effort. They are similar to
actions which inadvertently modify a creature’s envi-
ronment in some way. Examples include standing in
one spot and perspiring, or urinating, or rubbing up
against a tree. These are all actions that require effort
and modify the environment, but they do not provide
any immediate reward for the agent. Kirsh (1996)
calls these “task-external actions”.

Note that this implementation does not presume
any sort of long-term planning on the part of the
agents. We simply specified a collection of actions
available to them, and they choose these actions in a
purely reactive manner (i.e. based entirely on their
current sensory state). They do not initially have any
association between the action of making home-like
structures and the action of moving towards home-like
things. Any such association must be learned (either
via evolution, or via some other learning rule). It is
also worth noting that our actions are considered at a
slightly higher level than is common in agent models.
Our agents are not reacting by “turning left” or “going
forward”; they are reacting by “following target-like
things” or “moving randomly”.

Our agents are not designed to form structures
automatically as they wander around (as is the case in
standard ant models). In our simulation, a creature
must expend extra effort to generate these structures in
the world. An agent that does this will be efficient
only if the effort spent in generating structures is more
than compensated for by the effort saved by having
them in the world. Moreover, the agents’ world is

dynamic and the structures do not persist forever. The
home-likeness or target-likeness of the grid squares
decrease exponentially over time. These structures
also spread out over time. A home-like square will
make its neighboring squares slightly more home-like.
This can be considered similar to ant pheromones dis-
persing and evaporating, or leaf/twig piles being
knocked over and blown around by wind or other
passing creatures. 

2.2.2 Agent Sensing Our agents had four sensors,
two external and two internal, to detect their current
situation. The two external sensors sense how home-
like and how target-like the current location is (digi-
tized to four different levels). One internal sensor indi-
cates whether the agent has been to the target yet (yes
or no), and the other indicates how long it has been
since the agent generated a structure in its environ-
ment (up to a maximum of five time units). This is all
that the agents can use to determine which action to
perform. This configuration gives each agent 192 (4 ×
4 × 6 × 2) possible different sensory states.

2.3 Learning Rules

Given a purely reactive agent, we needed some way of
determining which action the agent will perform in
each of these 192 states. We investigated two different
methods for matching sensory states to actions: a
genetic algorithm and Q-learning. 

2.3.1 Stage A: Genetic Algorithm Before determin-
ing whether the agents could learn to drop “pherom-
ones” to decrease their tiredness within their lifetimes,
we first decided to check that it was possible to learn
this task across generations (i.e. on an evolutionary
time scale). For this, we used a genetic algorithm to
evolve foraging behavior in the agents.4 A genetic
algorithm is a general-purpose, but usually very slow,
method of finding good solutions to a problem. In this
case, no learning at all would occur during the lifetime
of one agent; each agent would be locked into a partic-
ular sense–response pattern. The agents would thus
always perform the same task for a particular state.
For example, the agents might be defined to always
drop one type of pheromone whenever they are on a
very home-like but not target-like square, if they are
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searching for food and if it has been three time steps
since they dropped any pheromone.

The agents start with completely random settings
for what to do in each sensory state. This results in
agents requiring long periods of time to travel to the
target and back. We defined the fitness function of
the genetic algorithm to be the inverse of this time
measure, which is interpreted as an indication of
tiredness. To improve their behavior, the genetic algo-
rithm makes slight modifications (random “muta-
tions”) to the set of rules. These mutations change the
behavior in unpredictable ways. The changed agents
are then simulated to discover how well they do.
Over time, the agents evolve to become better and
better at their foraging task (i.e. they reduce their
tiredness). 

In the simulation, 10 agents foraged at the same
time. Initially, the agents behaved randomly. Starting
at the home, they would wander about and might, by
chance, find the target and then, if they were very
lucky, their home. Most agents did not find the target
and make it back within the 1,000 time steps. On aver-
age, we found that each agent was completing 0.07
foraging trips every 100 time steps. After a few hun-
dred generations, the agents were completing an aver-
age of 1.9 trips in that same period. This result
confirmed that the agents were able to systematically
make use of their ability to sense and generate struc-
tures in the world, on an evolutionary time scale. Fur-
thermore, this systematic adding of structures to the
world provided a very large tiredness advantage over
completely random behavior. It also showed that we
had not chosen an impossible task for the agents to
learn. 

However, the heart of our investigation was to
determine whether a simple, general learning algo-
rithm would allow our agents to discover and make
use of the strategy of systematically adding structures
to the world within their lifetimes. Our analysis indi-
cated that the delayed-reinforcement learning rule
known as Q-learning (Watkins, 1989) would be the
simplest method that was likely to perform this task. 

2.3.2 Stage B: Q-Learning The Q-learning algo-
rithm (Watkins, 1989) is a probabilistic learning rule
that maps states in the world [s] to possible actions
[a], using feedback from rewards and punishments.
That is, it learns what actions in any given situation

are likely to lead to the maximum long-term reward
(or minimum long-term punishment). Given our
assumption that the only feedback is tiredness, we
give our agents a punishment (a reward of –1) when-
ever they perform an action, and a reward of 0 when-
ever they complete a trip. Thus, to minimize their
long-term punishment, they would need to travel from
their home to the target and back as quickly as possi-
ble. This objective function of minimizing punishment
can be considered equivalent (monotonically) to the
fitness function for the genetic algorithm version, but
applied to individual agents. Ideally, the agents would
learn that generating ESs can make their trips faster
(by allowing them to find the target and the home
more easily). 

The method utilized by the Q-learning algorithm
to achieve this result is structurally simple, but com-
plex in practice. The idea is to estimate future rewards
based on past experience. As an initial (approximate)
example, consider an agent in state S1. It may have
learned from previous situations that performing
action A1 in state S1 tends to lead to a reward of R1. It
may also have learned that performing action A2 in
state S1 leads to reward R2. The system could then
compare R1 and R2 to choose which action it should
perform. This is the basic idea behind Q-learning,
with the vital exception that instead of R1 and R2, it
uses Q1 and Q2, which are the predicted long-term
rewards, not the simple one-moment-from-now
rewards.

In other words, the agent chooses an action based
on this Q value, which is an approximated projection
of future reward, based on previous values from expe-
rience. Importantly, this projection is not calculated by
explicitly running possible action chains, for every
possible sequence of actions into the future and com-
piling their rewards. The projection is calculated using
a function (the Q function) learned in real time,
derived from previously executed actions, where every
action in the world is considered a test action. Once
derived, the use of this Q function can be considered
as implicitly running possible future actions, across
time. This is because every use of Q involves an
implicit projection into the future. (For details of this
projection, see Section 4.2.1, which provides a more
graphical description of Q-learning; see also Stewart
& Chandrasekharan, 2005). 

Using the Q-learning algorithm, we ran 10 agents
for 1,000 time steps.5 To indicate tiredness, we gave
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them a reinforcement value of –1 while foraging (indi-
cating a constant punishment for expending any effort).
When they returned home after finding the target, they
were given a reinforcement of 0, and they were then
sent back out again for another trip. Each agent inde-
pendently used the Q-learning algorithm, and there
was no communication among the agents. Figure 1
presents an outline of the learning model’s architec-
ture.

Result. Figure 2 shows the model at different stages
of learning. The dark line in Figure 3 shows the results
averaged over 100 separate trials. We can clearly see
that the agents are improving over time (i.e. they are
making more trips, which means they spend less time
performing the foraging task).

2.3.3 Confirming the Role of Epistemic Struc-
tures Although we have observed improvement
over time, we still need to show that it is the agents’
ability to systematically add structures to the world
that is causing this effect. To prove this, we re-ran the
experiment, this time removing the agents’ ability to
generate structures in the world. No other changes
were made.

Result. We found that when the agents were unable to
generate structures in the world, Q-learning did not
provide as much improvement. This result is shown by
the lighter line in Figure 3. There is still a small
improvement given by Q-learning, but the significant
improvement seen in the previous experiment is a
result of the agents’ ability to modify their environ-

Figure 1 The architecture of the Q-learning model for external structures.

Figure 2 The computer model at 10, 100, and 300 time steps. Black dots are the agents. The shading is darker the
more home-like or target-like a particular square is.
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ment. Q-learning also did not provide significant
improvement if the agents were only able to generate
one type of structure, or if any of the agent’s sensors
were removed.

We can also see from Figure 3 that having these
extra actions leads to the agents performing slightly
worse initially. However, the advantage of being able
to form ESs improves the agents’ performance
quickly. By the end of the simulation, agents require
only around 150 time steps to make a complete trip (a
foraging rate of 0.66 trips in 100 time steps). This is
twice as quick as agents without the structure-forming
ability.

An analysis of the actions of the agents showed
that they spent 58% of their time generating struc-
tures. This is striking, as time spent generating these
structures means less time for wandering, trying to
find the target or home. Table 1 gives a breakdown of
how time was allocated to different actions. It shows

that ES generation allowed the agents to complete
their foraging task in 150 time steps (down from 300
time steps) even though over half of those 150 time
steps were spent standing still. This happens because
the Q-learning algorithm learns that the long-term
punishment (tiredness) resulting from generating
these structures is lower than the tiredness resulting
from not generating these structures. There is clearly a
very large efficiency advantage in generating and
using these markers in the world, and the Q-learning
algorithm is able to discover this without explicit
long-term planning.

We also investigated the effect of moving the tar-
get closer and further from the home. As can be seen
in Figure 4, there is a significant improvement, as long
as the target is no more than seven steps away. This

Figure 3 The effect of ES generation. The figure is an
average over 1,000 runs of the simulation. Figure 4 The effect of varying the distance between

target and home. Allowing the creation of external ESs
consistently improves performance. Note that for far dis-
tances, ESs may not provide an improvement for this
task. 

Table 1 Time spent performing various actions (ES generation).

Action With structure generation Without structure generation

Move randomly 10% 32%

Toward home-like 19% 36%

Toward target-like 13% 32%

Make home-like 35% –

Make target-like 23% –
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range limitation is potentially because of the instabil-
ity of the ESs, caused by their evaporation and diffu-
sion rate. Unless otherwise noted, the distance from
home to target for the remainder of this article will be
set to six.

There are many reinforcement learning algo-
rithms available other than Q-learning, and any of
them could be used in this type of model. All these
algorithms learn in a similar way, but with different
details. So the resulting high-level behavior may be
different. Our ongoing research explores the capabili-
ties of these various methods. 

2.4 Discussion

The Q-learning system is a concrete proof-of-concept
implementation of our model: a simple learning mech-
anism that allows agents with purely reactive behavior
to systematically add structures to the world to lower
search. In related work, a similar implementation
using simulated Khepera robots was recently reported
(Ziemke, Bergfeldt, Buason, Susi, & Svensson, 2004),
but the agents in this study evolved the ES strategy;
they did not learn it within their lifetime. The genera-
tion of environmental structure over evolutionary time
has also been explored by Buason, Bergfeldt, and
Ziemke (2005), and Sipper (2001). Other related work
based on foraging models includes van Dartel (2005)
and van Dartel, Postma, van den Herik, and de Croon
(2004). In a different vein, Galantucci (2005) used a
virtual reality game to show how signing systems
emerge in human participants. 

The tiredness-based learning model implemented
in this simulation can explain the generation of task-
specific structure in Cases 1 and 2 (structures for one-
self, structures for oneself and others). Case 2 (struc-
tures generated for oneself and others) is explained by
appealing to the similarity of systems; if a structure
provides congeniality for me, it will provide congeni-
ality for other systems like me. The agents in our sim-
ulation formed structures that were useful for
everyone, even though they were just concerned about
reducing their own tiredness. This was possible only
because the agents were similar to one another. This is
comparable to how paths are formed in fields: one
person cuts across the field to reduce his physical
effort; others, sharing the same system and wanting to
reduce their effort, find the same route optimal. As

more people follow the route, a stable path is formed.
The evolution of such Case 2 structures have been
explored by work in stigmergy (Susi & Ziemke,
2001).

The model, as it stands, cannot explain the gener-
ation of Case 3 structures such as the male bower
bird’s bower (a mating signal that helps female birds
make better mating decisions), as the bowers do not
seem to provide any tiredness benefit for the generator
(for some possible ways of modeling Case 3 struc-
tures, see Chandrasekharan, 2005, 2006). 

It is worth noting that our model presents a novel
heuristic to interpret foraging behavior, as it illustrates
a mechanism that could lead to the evolution of ESs
within the lifetime of an individual. Existing models
of foraging behavior similar to ours are those in Bona-
beau et al. (1999), which use the home pheromone and
the food pheromone. This is in contrast to such mod-
els as that of Nakamura and Kurumatani (1996),
where a land-based and an airborne pheromone are
used, or models of the Cataglyphis species of ant,
which uses a complex landmark-navigation scheme
that allows it to return directly to the nest (Miller &
Wehner, 1988). All of these models assume that phe-
romones are continually being released while the ant
forages, and that there is no learning occurring during
the foraging behavior. Our Q-learning model does not
make either of these assumptions.

We were unable to find references indicating that
real ants (or other creatures) might, in fact, learn to
use pheromones (or other ESs, but see the pigeon
example below) within their lifetime, or any research
that indicates that the effort required to produce these
pheromones might interfere with foraging behavior.
Our simulation thus provides a very novel result, as
current biological models assume (based on experi-
mental evidence) that such ES structure-generation
behavior is mostly innate, and is based on evolution-
ary learning. Interestingly, recent research shows that
homing pigeons learn within their lifetimes to use
human-generated environment structure in a similar
fashion to reduce cognitive load. They follow high-
ways and railways systematically to reach their desti-
nation, even following exits (Guilford, Roberts, &
Biro, 2004). A similar landmark-based navigation sys-
tem has also been reported in bees (Gould, 1990).
Such use of existing environmental structures could be
seen as a special case of our ES model, where encoun-
tering some existing environmental structures lowers
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cognitive load, and paths with such structures get pref-
erence.

More generally, our model illustrates a learning
mechanism that could underlie niche construction
(Laland et al., 2000; Odling-Smee et al., 2003). This is
because the reinforcement factor we appeal to (tired-
ness, or energy efficiency) is general and organism-
independent, and it could also drive the construction
of physically congenial structures (such as beaver
dams and spider webs). Sterelny (2006) considers the
link between cognitive load and epistemic construc-
tion, but argues that the use and generation of ESs are
themselves high cognitive load activities. Our model
argues in the other direction, showing that ESs not only
lower cognitive load, but that this lowering could itself
drive the generation of further ESs. Sterelny (2005) also
makes a distinction between mere effects and construc-
tion, and argues for splitting the notion of niche con-
struction into different categories. We agree with this,
although the within-lifetime model of learning we
present here raises significant challenges to Sterelny’s
argument based on evolutionary dynamics. However,
we also think the lumping of physical and cognition-
oriented niche construction activities by Odling-Smee
et al. is justified to some extent. This is based on two
factors: (i) our model presents an organism-independ-
ent mechanism that could generate structures that
provide physical congeniality as well; (ii) we agree
with Godfrey-Smith’s position (Godfrey-Smith, 1994)
that cognition shades into other adaptive techniques.
Although we support the lumping approach to a degree,
we believe further analysis of each constructed struc-
ture would require a splitting as advocated by Sterelny
(2005). 

An interesting aspect of the within-lifetime learn-
ing model is that it scales well to human situations (see
Chandrasekharan, 2005), and could be used to explain
the developmental origins of structure generation
behavior in humans. It can also be extended to account
for the generation of internal structures that lower cog-
nitive load. We present this model in Section 3.

3 Generation of Internal Structures

In Section 2 we established that a simple, plausible,
and efficient learning mechanism could enable reac-
tive agents to add ESs to their environment within
their lifetime. The agents could perform actions that

changed aspects of their environment in ways that
could be sensed by that agent later, and the effects of
reinforcement caused some structures to be systemati-
cally created in certain situations. We have established
that this works with a simple foraging task and the
basic Q-learning algorithm.

This within-lifetime learning model raises an
interesting question: can similar within lifetime learn-
ing lead to the generation of novel structures in the
agent’s mind, rather than in the agent’s environment?
This seems to be both a natural extension of our work
on external structures, and, more importantly, a novel
way to model the origin of internal representations in
rudimentary agents within their lifetime. If an agent
can learn this strategy of generating internal structures
to lower tiredness, then it can choose to remember
particular things in particular ways to benefit it in the
long term, just as our earlier experiments showed that
it was possible to choose to drop pheromones in useful
ways.

This requires developing a task and a set of
actions that change internal states, so that an agent
using the same Q-learning approach can learn to
remember some states of the world and use this infor-
mation to better execute a task. For consistency, we
chose the same foraging-style task used in the previ-
ous experiment. To do this, an agent needs two things:
a way of remembering where it has come from (or,
equivalently, where it is going next), and a way of
knowing how to get there. In our previous experiment,
we gave the agent the first capability (the internal state
sensors, indicating whether they were looking for the
target or looking for home), and it had to learn the sec-
ond capability. We now changed the task so that it had
the second capability, and then had to learn the first.
That is, the agent did not have the knowledge of
whether it is supposed to be looking for its home or
looking for the target. It must learn to keep track of
that information on its own, via actions that change
internal states. 

3.1 A Model of Internal Structures

In theory, such a memory could be implemented using
a single value that the agent could learn to set to a zero
whenever it had found its home, and set to a one when
it had found the target. Whenever it was wandering
around in between, it could look at the value stored to
let it know which way it was going. However, we dis-



Chandrasekharan & Stewart Origin of Epistemic Structures 339

covered that this sort of memory is too fragile: the
agent could make one random mistake (changing the
value at the wrong time, for example), and the system
would become useless. This brittleness in learning
arises because such a system does not have two key
features of the successful external actions/sensors in
the previous experiment.

1. Context-specific generation of structure. When an
agent is dropping pheromones, it does not have
the option of dropping pheromones anywhere in
its universe. It can only drop them (and sense
them) where it is. The action is thus not drop-
pheromones, but rather drop-pheromones-at-my-
location. Similarly, the sensors sense pheromone-
at-my-location.

2. Gradual generation of structure. Dropping phe-
romones makes a small change to the pheromone
level at a particular location in space. This allows
for the smoothing out of errors, and allows the
learning process to converge to a solution, instead
of learning from discrete bits of information.

Note that these are not canonical features of internally
stored structures in classical models of internal struc-
tures (Fodor & Pylyshyn, 1988). In contrast, connec-
tionist models do argue for internal structures with
these features (Smolenksy, 1989). A mechanism sup-
porting these two features would provide an internal
equivalent to the pheromone dropping, spreading, and
sensing mechanisms in our ES experiment. Such a
mechanism needs to have the following three capabili-
ties.

1. It needs to be able to store data associated with a
particular context. That is, we need to be able to
give it a particular sensory state and a particular
piece of data (say a 1 or a 0), and it should be able
to remember this pairing. This is functionally
similar to dropping pheromones of different types
at a particular point in the world; the data being
remembered can be thought of as being at a par-
ticular point in the creature’s memory.

2. It needs to be able to recall data when in a particu-
lar context. That is, when the agent is in a particu-
lar sensory state, it should have a sensor that
indicates what value was stored in the past in this
state. This is functionally similar to the sensor
that indicates the level of pheromones at a partic-

ular point in the world; the value being given by
this internal sensor is, in some sense, the value
being stored at a particular location in the agent’s
memory.

3. The information needs to spread and change grad-
ually. That is, data stored in one context should be
available in similar contexts, and any new data
being stored should cause only small changes.
This is functionally similar to the spreading of
pheromones in space, and the fact that dropping
new pheromones makes only a small change to
the amount of pheromones at that location.

The first two criteria are features of episodic memory
(Tulving, 1983), which has recently been shown to
exist in some birds and rats (Griffiths, Dickinson, &
Clayton, 1999; Kart-Teke, De Souza Silva, Huston, &
Dere, 2006). The third is consistent with a capacity for
generalization (the ability to respond appropriately to
novel situations by adapting experience from similar
situations), but also emphasizes the need for gradual
adjustment of these representations. However, the jus-
tification for these criteria is based on our results with
external structures, not existing representational theo-
ries.

Internal structures with these three properties
would allow a creature in state X to perform an inter-
nal action that associates a particular number with
state X. Then, in the future, when it is in state X (or in
another similar state), it will be able to remember that
number. Furthermore, if it later chooses to associate a
different number with state X, its memory will change
gradually.

A well-studied mechanism that has exactly these
characteristics is the standard feedforward neural net-
work trained by back-propagation of error. Such a net-
work was chosen as our internal memory mechanism
(or “memory medium”). Just as our first simulation
had agents with mechanisms for dropping and sensing
pheromones, in our new experiment we gave the agent
a mechanism for storing data into this sort of network,
and a mechanism for sensing the current output of the
network. This network thus plays the same role as the
external environment in the first experiment, becom-
ing an internal environment (Dennett, 1975; Hills,
2006).

Note that our reason for using this neural network
is quite different from the traditional reasons for using
a neural network (such as graceful degradation and
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neural plausibility). We are using a neural network
because it is a system which is similar to the gradually
changing world the agent lives in. An interesting spec-
ulation here would be that the neural-network-like
structure of the brain evolved to approximate the
agent’s life world. This would be in line with the idea
that “the function of cognition is to enable the agent to
deal with environmental complexity” (the environ-
mental complexity thesis; Godfrey-Smith, 1994; for a
refinement of the thesis more in line with the work
reported here, see Seth, 2002), Note also that in our
model the neural network is not being used to repre-
sent the world. It is being used to allow the agent to
represent those useful parts of the world that it cannot
directly sense.

3.2 Defining the Experiment

Given the above characterization of an internal mem-
ory store (or internal environment), we can now pre-
cisely define the new version of the foraging problem.
We again have a simple grid-world, with a home and a
target. As the structures that agents would generate are
internal and not shared by others in an external world,
we have just one agent in the simulation. At any
moment, the agent can perform one of the following
actions:

1. move randomly;
2. move towards the target;
3. move towards the home;
4. train the internal environment to associate 1 with

the current sensory state;
5. train the internal environment to associate 0 with

the current sensory state.

As discussed previously, we are giving the agent the
ability to simply move directly towards the target, as
we are focusing on its ability to learn to remember
which way it is currently supposed to be going. 

The agent makes its decision on which action to
perform based on its sensory information. Here, we
have three sensors, which define the agent’s current
sensory state:

1. home detector (1 if the agent is at its home, 0 oth-
erwise);

2. target detector (1 if the agent is at the target, 0
otherwise);

3. current memory (the output of the neural network
for the current sensory state, i.e. the data currently
being remembered).

The agent then uses Q-learning to learn to perform
different actions based on its current sensory state.
Whenever the Q-learning system chooses actions 4 or
5, the system uses back-propagation learning to train
the internal neural network to associate a value (0 or
1) with the current sensory state. 6 Figure 5 provides
an outline of the learning system’s architecture. 

It should be noted that there is a subtle recursion
occurring in this model. One of the components of the
agent’s sensory state is the output of the neural net-
work (the internal environment), but that output is
itself dependent on the current sensory state. This
means that what the agent remembers is dependent on
what it is currently remembering. This architecture is
similar to that used by Tani and Nolfi (1999). This
memory system can be seen as a sort of internal envi-
ronment, as it is functionally connected to the rest of
the agent in exactly the same manner as the actual
external environment. (For an interesting extension of
this internal environment idea and foraging into more
complex domains of cognition, particularly psychiat-
ric disorders, see Hills, 2006.) 

As before, the agent’s only reward is based on the
total amount of effort required to complete a trip to the
target and back home. The agent’s performance can
then be compared with that of the same agent without
the ability to perform these internal actions. This is the
same approach taken in the previous experiment. 

3.3 Results

Figure 6 compares the foraging performance of the
agent with the ability to generate internal structures to
that of an agent without this internal mechanism. As
in the previous experiment, we can see that having the
ability to generate internal structures results in behav-
ior that is initially worse, but that then improves to be
consistently better than the agent without this ability.
These data are an average of 3,000 runs at each set-
ting.

The agent spends only 22% of its time generating
internal structures, compared with 58% in the external
case. Comparing the two cases is not entirely justified,
as the internal traces and external structures serve sig-
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nificantly different purposes in the foraging task: the
first orients the agent; the second marks the route. How-
ever, it is worth considering that internal structures may
be more efficient and stable than external structures, as
they are less costly and are under the complete control
of the agent. This could be one reason for the “repre-
sentational turn”, the wider use of the internal trace
strategy in nature than the external one.

To assess the robustness of our findings, we per-
formed a series of simulations while adjusting the
model in various ways. Our results (see Figure 7)
show that it is, in fact, a robust phenomenon. The only
situations where internal traces do not improve per-
formance are if the neural network has too few hidden
nodes (less than three), the neural network’s learning
rate is around 0.01 (a very low value for such sys-
tems), or the Q-learning learning rate is below 0.1
(also a low value for such systems). Furthermore, the
results are robust for varying distances between the

Figure 5 The architecture of the learning system for internal structures. Note that the only difference between this and
the previous learning system is the neural network memory in the agent (upper segment).

Figure 6 The foraging performance of the agent, with
and without internal structures. This is an average over
1,000 runs of the simulation. 

Table 2 Time spent performing various actions (internal
trace generation).

Action
With trace 
generation

Without trace 
generation

Move randomly 12.8% 30.4%

Go to home 37.2% 38.8%

Go to Target 27.5% 30.8%

Remember 1 11.0% –

Remember 0 11.5% –



342 Adaptive Behavior 15(3)

home and target (see Figure 8), although we did find
that if the home and target are right next to each other
(a distance of 1), then the ability to form internal ESs
actually decreases performance slightly. This indi-
cates that the system may not be well suited to highly

simplistic environments, but it degrades gracefully
without severely impacting performance.

The results above show that the agents benefited
from the ability to remember particular values in partic-
ular contexts. In other words, the simple reinforcement-
learning approach that worked for learning to generate
external ESs is also able to systematically generate and
make use of internal structures. Importantly, it seems to
work only when the internal structures generated are
context-specific and gradually distributed. 

4 Theoretical Implications

The above two simulations present an integrated
proof-of-concept model of how both external struc-
tures and internal memory structures come to be used
as task-specific structures, and how such structures
could systematically be generated within lifetime,
based just on the feedback of cognitive load via a
steady tiredness punishment. The two models have
wide theoretical implications, but we focus on the
model of internal structures, and its implications for
the following two areas of cognition:

• representation; 
• the Simulation model of the mind.

Figure 7 Performance (number of successful trips) of the internal ES model for varying parameter settings. The black
lines indicate the performance without structure generation. All points drawn in a lighter shade indicate parameter set-
tings for which structure generation results in more trips to the target and back. These results are representative for oth-
er combinations of parameter settings.

Figure 8 The effect of varying the distance between tar-
get and home for the internal ES model. Allowing the cre-
ation of internal ESs consistently improves performance.
Note that if the target and home are right next to each
other (distance of 1), structure generation actually slightly
decreases performance.
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4.1 Internal Traces as Proto-Representations

The defining feature of mental representations is that
they stand in for other things; they are “about” other
things (Dennett & Haugeland, 1987). Clark and Grush
(1999) provide three criteria for a “minimal robust
representationalism”: (i) representations would be
inner states whose adaptive functional role is to stand
in for extra-neural states; (ii) the states with represen-
tational roles should be precisely identifiable; (iii) the
representations should enhance real-time action. ESs,
as we have defined them, do not meet the first of these
criteria, as they are not inner states that stand in for
extra-neural states. They are outer states, and could be
viewed as similar to environmental states directly used
by organisms. 

However, based on the criteria of Clark and Grush,
the stored internal traces of the world in our second
simulation could be considered proto-representations,
because they are inner states, they are precisely identifi-
able (to some extent; see Section 4.1.1), and they
enhance real-time action. Once the structures stabilize,
they stand in for something specific in the world,
namely the home location and target location, and this
is their adaptive function. The traces are about some-
thing in the world, and they are useful because of this
aboutness. The agents store and use the traces to exploit
the aboutness, as this feature helps them choose the best
action in a context. The representational character of
these structures is broadly in line with the functional
theory of representation developed by Millikan (1993),
with cognitive load reduction acting as the “proper
function” in our model. Interestingly, the inner traces
are also what Millikan (1996) terms pushmi–pullyu
representations, acting simultaneously as both a direc-
tive for action and describing a state of the world.

However, these internal traces are not full-bodied
representations, the stronger version of representation
outlined by Clark and Grush, because our agents do
not use the internal traces as surrogates to model the
world when the actual structures do not exist in the
world (as in the case of being able to mentally rotate
an object when the object is not in the visual field; see
Clark & Grush, 1999; Beer, 2003), although they sup-
port a weak form of surrogate modeling (see section
on simulation). This is one reason why we consider
our internal traces proto-representations. The second
requirement laid out by Clark & Grush (1999) for an
internal structure to be a full-bodied representation, is

that the structures should be fully decoupled from
ongoing environmental input. Our internal structures
do not meet this criterion, but we consider this
requirement to be needlessly strong, as this would
mean the structures are also decoupled from the learn-
ing process, which may not be desirable (see also Sec-
tion 4.2).

Another reason why we consider the stored inter-
nal structures as proto-representations is our agents’
“selective representation” of the world (Mandik &
Clark, 2002), where an organism is considered to per-
ceive and cognize a “relevant-to-my-lifestyle world,
as opposed to a world-with all-its-perceptual-proper-
ties”. In this view, the mental representations of organ-
isms are highly constrained by the biological niches
within which the organisms evolved. 

Our model assumes and builds in some basic
internal structures such as those involved in sensing,
acting and learning. We consider this justified
because, strictly speaking, there are no reactive agents
in the world; all agents have some basic internal struc-
tures (and therefore an Umwelt; for a careful discus-
sion of this point, see Seth, 2002). We show that given
this basic ability for sensing, acting and learning, agents
could develop a secondary form of representation, a
structure that stands in for something in the world.
Moreover, our model explains what such “primitive”
representations are: they are the internal traces of the
world that allow the agent to shorten paths in a task
environment. Roughly, they are computation-reducing
structures (and equivalently, energy-saving structures).
Metaphorically, they are internal stepping stones that
allow organisms to efficiently negotiate the ocean of
stimuli they encounter. By extension, aboutness, or the
standing-in property of internal traces, is an energy-
saving mechanism in our model. This view is very dif-
ferent from traditional conceptions of representation
and aboutness (also see Section 4.1.1).

The model provides a unified account of the gen-
eration of external as well as internal structures, as the
internal structures are stored using the same process as
the external structures, and the structure of the internal
traces is similar to the structure of the external traces.
Given this same underlying mechanism, the agent can
transform the world or itself, depending on task and
resource conditions. The two manipulations (internal
and external) are equivalent at the mechanism level.
Internal changes lead to internal representations, and
external changes lead to the world being used directly.
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This integrated generation mechanism illustrates a
way of storing task-specific traces inside and outside
in an opportunistic fashion. The organism could
exploit both together, thus extending cognition out
into the world (Clark & Chalmers, 1998). In this pro-
posal, the notions of storing representations and using
the world directly (the symbolic and situated views)
are not at odds with each other; they are just two ways
of solving the adaptation problem. 

According to the extended mind thesis, the struc-
tures organisms generate in the world are extensions
of the cognitive system, in the sense that the organism
would not be able to function if the extensions did not
exist (as in the case of the patient with Alzheimer’s
disease losing his notebook and his notes in the world,
or a blind person losing his cane). Our model does not
support, but also does not rule out, this strong version
of the extended mind thesis, as the agents in our
model could function to some extent even without the
ES, although the higher energy load involved in such
cases lowered their performance. In the limit, this
higher search cost may cripple the agents, in which
case the ESs could be treated as extensions of the cog-
nitive system. For the moment, the model only sup-
ports a weaker version of the extended mind thesis,
where the external structures are resources for the
agent. The extension-resource distinction is not a hard
and fast one in our view; it is dependent on the cogni-
tive load involved in the task.

4.1.1 Nature of Proto-Representations Our model
of how such structures could be generated provides
some insights into the character of proto-representa-
tions. The classical notion of internal traces of the
world assumes the storing of static structures, with a
one-to-one relation with structures in the world (Fodor
& Pylyshyn, 1988). This is the traditional symbolic
representation view. It is difficult for reactive agents to
learn to store and make use of such static structures, as
such structures do not support incremental and con-
textual learning, which is the type of learning our
model uses and is commonly postulated in low-level
organisms.

If we assume that the storing of internal traces of
the world by lower-level organisms originated to sup-
port tasks, and this storing behavior was learned by
organisms, the notion of storing static traces with one-
to-one relations with entities in the world would need

to be revised. This leads us to propose what we call
the distributed origin thesis of representation: to learn
the internal trace strategy (i.e. to begin to represent),
the traces need to have a process structure, where ele-
ments are initially randomly stored in an internal net-
work (which acts as an equivalent of the external
environment), and the agents sense these internally
stored elements and act. Through an incremental proc-
ess based on feedback of cognitive load, these ele-
ments then gradually become systematically stored
and acquire a representational nature. Such an internal
representation is not a single well-defined structure
that reflects the world mirror-like, but a systematic
coagulation of contexts and associated actions, spread
over a network. The structure itself is just a common
thread of elements running through contexts and asso-
ciated actions that lower cognitive load. It is this com-
mon status that leads to the thread becoming stabilized
as an internal trace. Metaphorically, such an internal
representation resembles the core of an active bee
swarm, rather than static symbolic entities such as
words or pictures. 

This action-driven model of representation, and
the recursive and dynamic relation between the inter-
nal traces of the world and the agent’s actions-in-the-
world, make our implementation more than a standard
neural network model. A central difference is that in
our model a reference relation develops between the
neural network and elements in the agent’s environ-
ment. This reference relation is usually hard-coded or
assumed in standard neural network models. Also,
although we use a neural network, it is used to create
an internal equivalent of the agent’s task environment,
and the agent learns to store task-specific internal
traces of some aspects of that environment. As far as
we are aware, there are no neural network models that
show the origin of such task-specific internal traces.
Most neural network models assume that a corre-
spondence relation, albeit a distributed one, exists
between the network and the world.

We would also like to emphasize here that the
internal traces developed by our agent are radically
different from the categorical structures evolved in
recent work using evolutionary learning (see Beer,
2003; Steels & Belpaeme, 2005). The central differ-
ences are: (i) our agent executes a task similar to a
real-life task; (ii) it learns to store task-specific inter-
nal traces of the world; (iii) it learns to do this within
its lifetime.
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Our agent exists in a representation-hungry task
environment (i.e. one that requires some form of repre-
sentation to do the task well; see Clark & Toribio,
1994). The agent learns to represent an aspect of this
environment, because such representations lower cog-
nitive load and help the agent to execute the task with
less effort. So the internal traces our agent develops are
task-specific traces of the world, not categories. Our
model considers internal traces as useful and action-
driven structures, and we show that they arise because
of these features. In contrast, evolutionary models of
category learning presume categories that mirror the
world, and it is not clear why they arise. A related dif-
ference is that storing traces requires effort in our
model, and the agent chooses to store traces because the
effort involved in storing a trace is compensated for by
the advantage such storing provides. Category learning
models assume that learning categories are useful, and
therefore category learning is not something the agent
chooses to do out of many possible actions.

In our model, the internal and external structures
serve the same purpose for the organism, they arise
out of the same learning mechanism, and they have a
similar distributed and dynamic structure. This raises
the question, why not call the external structures rep-
resentations? This is a very interesting question, par-
ticularly given the complex, non-one-to-one, notion of
standing in we argued for in Section 4.1 (which, inci-
dentally, dilutes the first criterion of Clark & Grush of
inner states pointing to extra-neural states). It is true
that our notion of standing in makes the external struc-
tures in our model (collectively) eligible candidates
for the representation label, as they could be (collec-
tively) taken to stand in for “home” or “target”. How-
ever, they still lack the two crucial properties required
for a structure to be a full-bodied representation, as
argued by Clark and Grush (1999): (i) the ESs cannot
be fully decoupled from ongoing environmental input;
(ii) as the structures are not within the skin of the
agent, they are not transportable and utilizable in other
circumstances. Thus, they do not support surrogate
modeling of other environmental situations, a possi-
bility provided for by the internal structures (see Sec-
tion 4.2). So, while ESs could be called minimal
representations based on our revised notion of stand-
ing in, they are still a lesser form of representation
compared with the inner ones. However, note that
more complex external representations such as visual-
izations and physical models of chemical structures

would meet the two stronger criteria, and would qual-
ify for the label representation. This is broadly in line
with the common use of the term. 

4.2 Internal Traces and the Simulation/
Enaction Model

In this section we describe the highly debated Simula-
tion/enaction model of cognition, and how our model
of internal structures supports one form of simulation/
enaction and explains its origins. To avoid confusion
with the simulation we implemented, we use Simula-
tion with a capital S when discussing this proposed
cognitive mechanism.

In general, Simulation models of cognition pro-
pose that neural structures responsible for action and/
or perception are recruited in the performance of cog-
nitive tasks (such as language processing or observing
another agent execute an action). Such a recruitment
process is indicated by experiments (for reviews, see
Svenson & Ziemke, 2004; Brass & Heyes, 2005). This
evidence is used to make the argument that different
aspects of cognition involve a virtual running of
actions (Metzinger & Gallese, 2003). Of particular
significance is the claim that such Simulation/enaction
grounds symbols and other representations (i.e. pro-
vides their content; see, for instance, Barsalou, 1999,
2003). The Simulation view is a rapidly developing
theoretical framework in cognitive science (Clark &
Grush, 1999; Hesslow, 2002; Grush, 2004), and is
used to explain cognitive processes ranging from per-
ception to language, reasoning and theory of mind
phenomena (Metzinger & Gallese, 2003; Svenson &
Ziemke, 2004). 

The cognitive mechanism of Simulation is con-
sidered to involve “re-enactments of states in modal-
ity-specific systems” (Barsalou, Simmons, Barbey, &
Wilson, 2003), as against non-Simulation models,
which involve “redescriptions of states in amodal rep-
resentational languages” (Barsalou et al., 2003). The
central distinction is between re-enactment of actions
and redescription using symbols. Simulation is con-
sidered to involve enactment or “acting out” an expe-
rience or action to cognize a state, while non-
Simulation is considered to involve (just) retrieval and
manipulation of descriptive symbols, as in performing
logic or arithmetic. This dichotomy presents two ends
of a continuum of processes, as there could be in-
between processes that involve both.
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A crude example to illustrate the two processes
would be two ways of remembering an accident. In
the first case of remembering, the event is acted out in
the mind, and results in bodily states associated with
the event, such as shaking and crying. The other way
to remember the event would be as images, without
any acting out of the event, and therefore without the
associated body states. Because the former involves
acting out, it leads to changes in the perception and
action modules of the brain associated with the actual
experience of the event, so it is modality-specific
(modal approach, in Barsalou’s terminology). The lat-
ter does not involve acting out of the memory, just a
retrieval (and/or manipulation) of stored images. This
mechanism thus represents an amodal approach, in
Barsalou’s terminology. Figure 9 captures the distinc-
tion using traditional modules used in cognitive psy-
chology.

There are two major types of Simulation/enaction
identified in the literature. The two are closely con-
nected, but we treat them as separate for the purposes
of our discussion. The first involves enacting or run-
ning actions virtually while performing cognitive
tasks such as processing verbs. That is, brain areas
that are involved when actually performing the action
associated with the verb (say, chewing) are implicitly
activated while processing a representation associated
with that action (the verb chew). Such implicit activa-
tion of action areas also occurs when an agent

observes another agent performing an action (Brass &
Heyes, 2005). We call this type of virtual enaction
Simulation-R, for Simulation linked to representa-
tions. 

Evidence in support of this Simulation mecha-
nism comes from recent work in neuroscience, which
shows that action areas are activated while observing
(i.e. representing) an action, and also during linguistic
processing. Gallese, Ferrari, Kohler, and Fogassi
(2002) report that when we observe goal-related
behaviors executed by others (with effectors as differ-
ent as the mouth, the hand, or the foot), the same corti-
cal sectors are activated as when we perform the same
actions. Whenever we look at someone performing an
action, in addition to the activation of various visual
areas, there is a concurrent activation of the motor cir-
cuits that are recruited when we ourselves perform
that action. We do not overtly reproduce the observed
action, but our motor system acts as if we were exe-
cuting the same action we are observing. This effect
exists in monkeys as well, and has been replicated
across a series of studies (see particularly the work on
mirror neurons and canonical neurons; Hurley &
Chater, 2005 provide a good review). 

A similar process of Simulation of actions linked
to representations has recently been demonstrated in
language understanding. Bergen, Chang, and Narayan,
(2004) report an imaging study where subjects per-
formed a lexical decision task with verbs referring to

Figure 9 In the Simulation mechanism (left), the central executive is considered to pass processing of cognitive tasks
onto the different component neural units, including the motor one, resulting in a process that is almost equivalent to the
embodied agent acting in the world. In non-Simulation processing, the central executive is considered to process stored
representations of the world by itself, with minimal or no input from the component neural units. This results in a disem-
bodied process that is detached from the world. These two ways of processing (modal and amodal) need not be mutual-
ly exclusive and could be considered two ends of a continuum.
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actions involving the mouth (e.g. chew), leg (e.g. kick)
or hand (e.g. grab), and areas of motor cortex respon-
sible for mouth/leg/hand motion displayed more acti-
vation, respectively. It has also been shown that
passive listening to sentences describing mouth/leg/
hand motions activates different parts of pre-motor
cortex. 

The second type of Simulation discussed in the
literature is more complex, and involves predicting
another agent’s behavior by virtually enacting the
other agent’s system states using one’s own system as
a proxy. This notion of Simulation is mostly found in
the theory of mind literature (see Nichols, Stich, Les-
lie, & Klein, 1996). A closely related notion of Simu-
lation is the virtual enaction of another agent’s actions
across time using one’s own system, and then mutat-
ing these actions to generate alternatives to reality.
This notion of Simulation is found in counterfactual
thinking literature (see Kahneman & Tversky, 1982).
Although not discussed much in the literature, such
Simulation of system states could also be used to test
alternatives to one’s own current state (for instance, what
would be my state at time T if I perform action X?). We
call this type of virtual enaction to predict future sys-
tem states (one’s own or others’) Simulation-S, for
Simulation of system states.

There is only indicative evidence that this type of
system-level enaction can allow agents to judge other
agents’, or one’s own, system states. For such judg-
ments, there should exist a system-level equivalence
between an action and its Simulation. Svenson and
Ziemke (2004) review three sources of evidence sup-
porting such a system-level equivalence: mental chro-
nometry, autonomic responses and neuroimaging
experiments. Mental chronometry experiments show
that the time to mentally execute actions closely cor-
responds to the time it takes to actually perform
them. Autonomous response experiments show that
responses beyond voluntary control (such as heart and
respiratory rates) are activated by motor imagery, to
an extent proportional to that of actually performing
the action. Neuroimaging experiments show that simi-
lar brain areas are activated during action and motor
imagery of the same action. Beside this evidence that
supports action–Simulation equivalence at the system
level, there are a whole host of theoretical arguments
that support simulating of other agents’ system states
to predict their behavior (see Nichols et al., 1996 for a
review). The literature on motor imitation also indi-

cates that action observation could lead to a judgment
of another agent’s system state (Brass & Heyes, 2005;
Hurley & Chater, 2005).

While these two Simulation mechanisms (Simula-
tion-R, Simulation-S) are used to explain a range of
cognitive phenomena, two aspects of the Simulation
idea remain unclear.

1. What internal mechanisms lead to the origin of
such enactable internal structures?

2. What is the nature of internal structures that sup-
port such virtual enaction? 

We argue below that our model of stored internal
traces provides tentative answers to both these ques-
tions, and thus provides an evolutionary basis to the
Simulation model. 

4.2.1 Simulatable Content We begin our discussion
with Simulation-R, the idea that while processing a
given internal representation (such as the verb chew),
brain systems associated with performing actions
related to that representation (such as the action of
chewing) are also activated. 

Our agent in the second experiment develops
internal traces of the world using a feedback system
based on actions and the cognitive load associated
with actions. Values are initially randomly stored in an
internal neural network environment, and then they are
learned to be systematically stored, based on the feed-
back of cognitive load. As observed in Section 4.1.1,
the systematically stored values are tightly coupled to
actions; they are nothing but a thread that links actions
that lower cognitive load. The systematically stored
elements thus contain action information. That is, if
zero is stored at target always, this means storing zero,
sensing zero, and executing the action associated with
zero lowered cognitive load. The sensing of the zero is
thus not just a sensing of the zero, but a sensing of the
actions and cognitive load associated with zero. These
action components are implicitly activated when zero
is sensed.

At a high level, it could be argued that such a
proto-representation emerging out of actions encapsu-
lates information about actions and cognitive load,
because there is nothing else contributing to such an
internal trace. This means such a representation sup-
ports the Simulation of actions related to the represen-
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tation, because the representation is a task-specific
structure that emerges out of actions and feedback
based on actions. This possibility for Simulation does
not exist if representations are considered as static
structures learned in a mirror-like fashion, with no
link to actions or system states such as cognitive load.
For instance, if the verb chew is just captured and
stored (in either word-like or image-like fashion), it is
hard to see how (and why) processing chew leads to
Simulation of chewing. The same applies to a stand-
alone neural network that learns to categorize inputs
about an action as chew. In contrast, task-specific
internal structures are stored by our agents while act-
ing in an environment. The structures arise out of
actions and system states, and they therefore naturally
support virtual enaction of those actions. 

The above is a high-level view. To obtain a more
detailed sense of the link between Simulation and the
internal trace generation process, we have to examine
the nature of the Q-learning algorithm. One way to
think of Q-learning is to think of “pretend play” by
novice chess players, where they try out potential
moves. The organism tests the environment with dif-
ferent potential actions to see what reward that partic-
ular environment provides for that particular action.
However, for both the novice chess player and the
Q-learning system, it is not the immediate reward for
that action which is important. Instead, it is the long-
term reward (Q) that is important. Using the Q func-
tion is equivalent to a novice chess player who tries
out the move of taking a knight with his queen, and
then looks at the new board position and has the feel-
ing of “that looks dangerous, I’d better not do that”.
Importantly, this Q function is constantly being
updated by the results of all of an agent’s actions in
the world. Indeed, Q-learning systems tend to try out
exploratory actions to gather information about what
rewards will be in unknown situations.7 

Furthermore, like the novice chess player, the
Q-learning algorithm only enacts actions one step
ahead, but through the use of the Q function, its evalu-
ation of how good that step is includes the whole
future set of actions, because the Q function approxi-
mates the possible outcome of an entire range of state-
action combinations. Instead of developing an esti-
mate of rewards for a single action, the Q function can
be thought of as perturbing the agent-environment
system, and then developing an estimate of the reward
structure of these perturbations as they propagate.

This means it can look ahead (i.e. test run) only one
step, but the output of that test run provides an esti-
mate of how the system as a whole would perform
many steps into the future, and the reward structure
after that time. Once the Q function is developed, the
agent still technically looks ahead only one step, but it
can be considered to implicitly run many states ahead.

It can be seen from the above description that the
Q-learning algorithm is performing a rudimentary
form of Simulation-S; it is evaluating possible alterna-
tive system states by enacting them using the agent’s
own system. While learning, the agent is simulating
itself and its own interactions with the world. In our
second experiment, this means the agent is able to
simulate itself, its interactions with the world, and its
own modifications of its own memory. It is this Simu-
lation-S that allows the system to learn to generate
internal structures. 

This means we assume Simulation-S, and a sim-
ple version of it is built into our model. The proto-rep-
resentations are a product of this basic Simulation-S
process. However, this process illustrates something
important: not only do the proto-representations in our
model implicitly contain action information (as they
arise out of actions that lower cognitive load), but the
Q-learning system also virtually enacts these actions
to judge cognitive load. This is because the internal
structures are test run for their reward structure. So the
proto-representations in our model not only support
enaction linked to representations, but also provide a
working model of this enaction process. 

However, note that the above explicit enaction
process is executed primarily when the system learns,
and not when the proto-representations are used by the
agent (to choose between target and home). Any enac-
tion that occurs post-learning is only implicit (i.e. only
in the sense that the proto-representations are tightly
coupled to actions and action-related information, and
these actions and information are activated when the
representations are sensed). This implicit enaction
may be similar to Simulation, in which case the Simu-
lation mechanism arises out of learning. A similar
idea is proposed by Hurley and Chater (2005) and the
associative sequence learning model of imitation (see
Brass & Heyes, 2005; Heyes, in Hurley & Chater,
2005). 

Given this relation between learning and simula-
tion, one possible way of interpreting the role of Sim-
ulation-R in grounding content could be as follows.
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When Simulation-R (say enacting chewing while
processing the word chew) occurs in a system, it is not
grounding the content of chew directly. The enaction
is part of the learning process (i.e. the process that led
to the storing and use of the word chew), which is
what grounds the content of the word, by activating
the contexts, actions and environmental conditions
linked to that trace. In this interpretation, the learning
process is always running in the background, as
agents in dynamic environments cannot afford to stop
learning. The Simulation mechanism is a way of link-
ing to this learning process, a type of “running the
learning in miniature”, as done by our agents when
they access the internal traces.

The constant learning process is particularly true
in our model, where the proto-representations, actions
and cognitive load are tightly coupled. For instance,
some changes in the environment could make the
stored structures useless for our agent, and the agent
will then have to reconfigure the link between actions
and the stored structures in the internal network. If the
learning system is activated when the trace is
accessed, it will allow the agent to use the most cur-
rent relation(s) between the trace, the world and the
agent’s system. In this view, if Simulation plays any
role in the grounding of representations, this role
comes from the learning mechanism, which links
internally stored structures with (i) entities in the
world, (ii) environmental conditions, and (iii) the
agent’s task and biological needs. Such a (useful) tight
link between learning, use of internal structure, and
simulation argues against the full decoupling required
by Clark and Grush (1999) for an internal structure to
be a full-blooded representation.

A related implication of this model of enaction
of traces is that Simulation-S is more basic than Sim-
ulation-R, as the former type of Simulation leads to
internal structures that support the latter type of Simu-
lation. This could mean that at least part of the enac-
tion that occurs during Simulation-R is related to
system states that led to the learning of that represen-
tation. In this interpretation, if Simulation is consid-
ered to ground representations (i.e. provide their
content), at least part of that content relates to system
states, particularly cognitive load. (This ties in very
well with our claim in Section 4.1 that aboutness of
internal traces is partly a mechanism to reduce cogni-
tive/energy load.) The task-specific nature of internal
traces plays a central role in this view, as the Simula-

tion capability of traces arises out of action-driven
learning linked to tasks. This means task-specificity
and action-driven learning of internal traces would
need to be central components of any project that
seeks to use Simulation to ground representational
content.

5 Conclusion

We have presented two proof-of-concept models
which show that the generation of both external and
internal structures that lower cognitive load could be
learned within lifetime, using the same learning mech-
anism, based just on feedback of cognitive load. These
models facilitate an integration of the symbolic and
situated views of cognition, and develop a possible
mechanism supporting the extended mind thesis. They
also present an implementation of the origin of enacta-
ble content, and raise questions about the viability of
the one-to-one model of internal representation.

Notes

1 The source code for both the simulations (written in
Python) can be downloaded from http://www.carleton.ca/
ics/ccmlab/epistemic.html.

2 The term “tiredness” in the high-level model indicates the
“felt” quality of the feedback in organisms, which allows
tracking of the cost using affect (i.e. without using a sepa-
rate computational module that tracks cost).

3 The distinction between physical and cognitive congenial-
ity is quite thin (“shades off”; see Godfrey-Smith, 1994) at
the level of lower-level organisms. Avoiding cognitive
effort usually means avoidance of search; at best this can
be viewed as indirect physical congeniality. Avoiding
physical effort is more direct, as in the case of pulling a
grain from the side, instead of the front. 

4 The genetic algorithm used involved a look-up table
genome, indicating which action to perform for each of
the 192 possible sensory states. Mutations consisted of
randomly changing exactly one item in the genome, and
crossover was uniform. Extrema selection (Stewart, 2001)
with a threshold of 90% was used to increase evolution
speed along neutral networks. Population size was 50 and
the system ran for 300 generations.

5 Q-learning (for both the external and internal cases) was
performed using a standard look-up table memory. The
exploration rate (ε, the chance of performing an action at
random instead of the system’s best guess) was 0.1, the
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learning rate (α, the amount by which to change the inter-
nal look-up table values) was 0.2, and the discounting rate
(λ, the geometric reduction of importance of future
rewards) was 0.95. Q-learning maintains a table of esti-
mated reward values for taking each possible action in
each possible sensory state, and is represented by QS,A.
These values are all initially zero. As experience in the
world occurs, and rewards/punishments are received, the
values are changed. To update, we first calculate
r + λ • maxQS2 (where r is the received reward, λ is the
fixed discounting rate, and maxQS2 is the largest value
found looking at all the actions that could be taken from
the sensory state the agent finds itself in after performing
the action.) This value is then combined with the old pre-
diction (QS1,A1) using the learning rate (α), resulting in the
following formula:

QS1,A1 ← (1 – α) QS1,A1 + α(r + λ • maxQS2).

To choose an action to perform, the system simply takes
the current state and looks at each possible action that
could be performed. The action with the highest Q value is
chosen 1 – ε of the time. In the remaining ε times, a ran-
dom action is chosen.

6 The neural network was a feedforward multilayer percep-
tron, trained using back-propagation of error (Rumelhart,
Hinton, & Williams, 1986). It had three input nodes (for
the three values of the sensory state, scaled to be between
–1 and 1), one output node, and three hidden nodes. The
activation function for all nodes was the hyperbolic tan-
gent, and the learning rate (α) was 0.2. To handle the feed-
back between the output value and the input state, the
network was run 100 times.

7 Interestingly, such tests are known to exist in the animal
world. Curio (1976) reports that most animals that predate
on herds make a “test attack” to identify animals whose
ability to run away is insufficient to protect them. In such
cases, the actions in the world are not “real”, but “tests”,
or “simulated” actions. Also, the organism uses itself and
the environment as a “test bed” or “simulation environ-
ment” to judge the quality of its own actions.

Acknowledgments

We thank Dr. Andrew Brook for clarifying and sharpening the
philosophical ideas presented here. Thanks are also due to
Babak Esfandiari, Robert West, David Kirsh, Narayanan Srini-
vasan, Thomas Hills and Jennifer Schellinck for critical review
and feedback. We are grateful for the clear pointers and sugges-
tions from the three reviewers and the action editor, which have
contributed significantly to the paper. 

References

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral
and Brain Sciences, 22, 577–609.

Barsalou, L. W. (2003). Situated simulation in the human con-
ceptual system. Language and Cognitive Processes, 18,
513–562.

Barsalou, L. W., Simmons, W. K., Barbey, A. K., & Wilson, C.
D. (2003). Grounding conceptual knowledge in modality-
specific systems. Trends in Cognitive Sciences, 7, 84–91.

Beer, R. D. (2003). The dynamics of active categorical percep-
tion in an evolved model agent. Adaptive Behavior, 11,
209–243.

Bergen, B., Chang, N., & Narayan, S. (2004). Simulated action
in an embodied construction grammar. In K. D. Forbus, D.
Gentner, & T. Regier (Eds.), In Proceedings of the 26th
Annual Meeting of the Cognitive Science Society, Chicago,
IL. Hillsdale, NJ: Lawrence Erlbaum.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm
intelligence: from natural to artificial systems. New York:
Oxford University Press.

Boyd, R., & Richerson, P. J. (1996). Why culture is common
but cultural revolution is rare. Proceedings of the British
Academy, 88, 73–93.

Bradbury, J. W., & Vehrencamp, S. L. (1998). Principles of animal
communication. Sunderland, MA: Sinauer Associates.

Brass, M., & Heyes, C. (2005). Imitation: Is cognitive neuro-
science solving the correspondence problem? Trends in
Cognitive Sciences, 9, 489–495.

Brooks, R. (1991). Intelligence without representation. Artifi-
cial Intelligence, 47, 139–159.

Buason, G., Bergfeldt, N., & Ziemke, T. (2005). Brains, bodies
and beyond: Competitive co-evolution of robot control-
lers, morphologies and environments. Genetic Program-
ming and Evolvable Machines, 6, 25–51.

Camazine, S. (1991). Self-organizing pattern formation on the
combs of honey bee colonies. Behavioral Ecology and
Sociobiology, 28, 61–76.

Chandrasekharan, S. (2005). Epistemic structure: An inquiry
into how agents change the world for cognitive congenial-
ity. Ph.D. dissertation, Carleton University, Ottawa, Can-
ada. Retrieved 5 December 2006 from http://www.
carleton.ca/iis/TechReports/files/2005-02.pdf

Chandrasekharan, S. (2006). Money as epistemic structure.
Behavioural and Brain Sciences, 29, 183–184.

Clark, A., & Chalmers, D. (1998). The extended mind. Analy-
sis, 58, 7–19.

Clark, A., & Grush, R. (1999). Towards a cognitive robotics.
Adaptive Behavior, 7, 5–16.

Clark, A., & Toribio, J. (1994). Doing without representing?
Synthese, 101, 401–431.

Curio, E. (1976). The ethology of predation. New York:
Springer-Verlag.



Chandrasekharan & Stewart Origin of Epistemic Structures 351

Dennett, D. (1975). Why the law of effect will not go away.
Journal of the Theory of Social Behaviour, 5, 179–187.

Dennett, D., & Haugeland, J. (1987). Intentionality. In R. L.
Gregory (Ed.), The Oxford companion to the mind.
Oxford: Oxford University Press.

Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive
architecture: A critical analysis. Cognition, 28, 3–71.

Galantucci, B. (2005). An experimental study of the emergence
of human communication systems. Cognitive Science, 29,
737–767. 

Gallese, V., Ferrari, P. F., Kohler, E., & Fogassi, L. (2002). The
eyes, the hand and the mind: Behavioral and neurophysio-
logical aspects of social cognition. In M. Bekoff, C. Allen,
& M. Burghardt (Eds.), The cognitive animal (pp. 451–
462). Cambridge, MA: MIT Press.

Godfrey-Smith, P. G. (1994). Complexity and the function of
mind in nature. Cambridge, MA: MIT Press.

Gould, J. L. (1990). Honey bee cognition. Cognition, 37, 83–103.
Griffiths, D. P., Dickinson, A., & Clayton, N. S. (1999). Declar-

ative and episodic memory: What can animals remember
about their past? Trends in Cognitive Science, 3, 74–80.

Grush, R. (2004). The emulation theory of representation:
Motor control, imagery, and perception. Behavioral and
Brain Sciences, 27, 377–442.

Guilford, T., Roberts, S., & Biro, D. (2004). Positional entropy
during pigeon homing II: Navigational interpretation of
Bayesian latent state models. Journal of Theoretical Biol-
ogy, 227, 25–38.

Henry, J. D. (1977). The use of urine marking in the scavenging
behaviour of the red fox (Vulpes vulpes). Behaviour, 62,
82–105.

Hesslow, G. (2002). Conscious thought as simulation of behav-
iour and perception. Trends in Cognitive Sciences, 6, 242–
247.

Hills, T. (2006). Animal foraging and the evolution of goal-
directed cognition. Cognitive Science, 30, 3–41.

Hurley, S., & Chater, N. (2005). Perspectives on imitation:
From neuroscience to social science (Vols 1–2). Cam-
bridge, MA: MIT Press.

Hutchins, E. (1995a). Cognition in the wild. Cambridge, MA:
MIT Press.

Hutchins, E. (1995b). How a cockpit remembers its speeds.
Cognitive Science, 19, 265–288.

Kahneman, D., & Tversky, A. (1982). The simulation heuristic.
In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judg-
ment under uncertainty: Heuristics and biases (pp. 201–
208). New York: Cambridge University Press.

Kart-Teke, E., De Souza Silva, M. A., Huston, J. P., & Dere, E.
(2006). Wistar rats show episodic-like memory for unique
experiences. Neuorbiology of Learning and Memory, 85,
173–182.

Kirby, S. (2002). Natural language from artificial life. Artificial
Life, 8, 185–215.

Kirsh, D. (1995). The intelligent use of space. Artificial Intelli-
gence, 73, 31–68.

Kirsh, D. (1996). Adapting the environment instead of oneself.
Adaptive Behavior, 4, 415–452.

Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic
from pragmatic action. Cognitive Science, 18, 513–549.

Laland, K. N., Odling-Smee, F. J., & Feldmann, M. W. (2000).
Niche construction, biological evolution and cultural
change. Behavioral and Brain Sciences, 23, 131–175.

Mandik, P., & Clark, A. (2002). Selective representing and
world making. Minds and Machines, 12, 383–395.

Metzinger, T., & Gallese, V. (2003). The emergence of a shared
action ontology: Building blocks for a theory. Conscious-
ness and Cognition, 12, 549–571. 

Miller, M., & Wehner, R. (1988). Path integration in desert
ants, Cataglyphis fortis. Proceedings of the National
Academy of Sciences, USA, 85, 5287–5290.

Millikan, R. G. (1993). White Queen psychology and other
essays for Alice. Cambridge, MA: MIT Press.

Millikan, R. G. (1996). Pushmi–pullyu representations. In L.
May & M. Friedman (Eds.), Mind and morals (pp. 145–
161). Cambridge, MA: MIT Press. 

Nakamura, M., & Kurumatani, K. (1996). Formation mecha-
nism of pheromone pattern and control of foraging behav-
ior in an ant colony model. In C. G. Langton and K.
Shimohara, (Eds.), Artificial life V: Proceedings of the 5th
International Workshop on the Synthesis and Simulation
of Living Systems. Nara, Japan. Cambridge, MA: MIT
Press.

Nichols, S., Stich, S., Leslie, A., & Klein, D. (1996). Varieties
of off-line simulation. In P. Carruthers & P. Smith (Eds.),
Theories of theories of mind (pp. 39–74). Cambridge, UK:
Cambridge University Press.

Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003).
Niche construction: The neglected process in evolution.
Princeton, NJ: Princeton University Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986).
Learning representations by back-propagating errors.
Nature, 323, 533–536. 

Seth, A. K. (2002). Agent-based modelling and the environ-
mental complexity thesis. In B. Hallam, D. Floreano, J.
Hallam, G. Heyes, & J. A. Meyer (Eds.), From animals to
animats 7: Proceedings of the 7th International Confer-
ence on the Simulation of Adaptive Behavior (pp. 13–24).
Edinburgh, UK. Cambridge, MA: MIT Press.

Silberman, S. (2003). The bacteria whisperer. Wired, (April),
104–108.

Sipper, M. (2001). On the origin of environments by means of
natural selection. AI Magazine, 22 (4), 133–140.

Smolensky, P. (1989). Connectionist modeling: Neural computa-
tion/mental connections. In L. Nadel, L. A. Cooper, P. Culi-
cover, & R. M. Harnish (Eds.), Neural connections, mental
computation (pp. 49–67). Cambridge, MA: MIT Press.



352 Adaptive Behavior 15(3)

Steels, L., & Belpaeme, T. (2005). Coordinating perceptually
grounded categories through language: A case study for
colour. Behavioral and Brain Sciences, 28, 469–529.

Sterelny, K. (2005). Made by each other: Organisms and their
environment. Biology and Philosophy, 20, 21–36.

Sterelny, K. (2006). Cognitive load and human decision, or,
three ways of rolling the rock uphill. In S. Stich, S. Lau-
rence, & P. Carruthers (Eds.), The innate mind: Culture
and cognition. Cambridge, UK: Cambridge University
Press.

Stewart, T. C. (2001). Extrema selection: Accelerated evolution
on neutral networks. In Proceedings of the IEEE Congress
on Evolutionary Computation 2001. Seoul, Korea. New
York: IEEE Press.

Stewart, T., & Chandrasekharan, S. (2005). Two cognitive
descriptions of Q-learning. Carleton University Cognitive
Science Technical Report. Retrieved 5 December 2006
from http://www.carleton.ca/iis/TechReports/files/2005-
03.pdf.

Stopka, P., & Macdonald, D. W. (2003). Way-marking behav-
ior: An aid to spatial navigation in the wood mouse (Apo-
demus sylvaticus). BMC Ecology, 3 (3).

Susi, T., & Ziemke, T. (2001). Social cognition, artifacts, and
stigmergy: A comparative analysis of theoretical frame-
works for the understanding of artifact-mediated collabo-
rative activity. Cognitive Systems Research, 2, 273–290.

Svenson, H., & Ziemke, T. (2004). Making sense of embodi-
ment: Simulation theories and the sharing of neural cir-
cuitry between sensorimotor and cognitive processes. In
K. D. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings

of the 26th Annual Meeting of the Cognitive Science Soci-
ety. Chicago, IL. Hillsdale, NJ: Lawrence Erlbaum.

Tani, J., & Nolfi, S. (1999). Learning to perceive the world as
articulated: An approach for hierarchical learning in sen-
sory-motor systems. Neural Networks, 12, 1131–1141.

Tesfatsion, L. (2002). Agent-based computational economics:
Growing economies from the bottom up. Artificial Life, 8,
55–82.

Todd, P. M., & Miller, G.F. (1999). From pride and prejudice to
persuasion: Realistic heuristics for mate search. In G. Gig-
erenzer, P. M. Todd, & the ABC Research Group, Simple
heuristics that make us smart (pp. 287–308). New York:
Oxford University Press. 

Tulving, E. (1983). Elements of episodic memory. Oxford:
Clarendon Press.

van Dartel, M. F. (2005). Situated rrepresentation. Doctoral
dissertation, Maastricht University, the Netherlands.

van Dartel, M. F., Postma, E. O., van den Herik, H. J., & de
Croon, G. (2004). Macroscopic analysis of robot foraging
behaviour. Connection Science, 16, 169–181.

Watkins, C. (1989). Learning from delayed rewards. Doctoral
dissertation, Department of Psychology, University of
Cambridge, Cambridge, UK.

Zahavi, A., & Zahavi, A. (1997). The handicap principle: A
missing piece of Darwin’s puzzle. Oxford: Oxford Univer-
sity Press.

Ziemke, T., Bergfeldt, N., Buason, G., Susi, T., & Svensson, H.
(2004). Evolving cognitive scaffolding and environment
adaptation: A new research direction for evolutionary
robotics. Connection Science, 16, 339–350.

About the Authors

Sanjay Chandrasekharan holds an undergraduate degree in physics and a master’s
degree in communication from the University of Kerala, India. A chance encounter with
The Mind’s I introduced him to cognitive science. This led to a second master’s degree, in
linguistics (Jawaharlal Nehru University, New Delhi), and a Ph.D. in cognitive science
(Carleton University, Ottawa, Canada). As a graduate student, he worked as a pre-
doctoral fellow with the Adaptive Behaviour and Cognition Group (Max Planck Institute for
Human Development, Berlin) and was a visiting researcher at the Institute of Information
Technology, National Research Council, Canada. After graduation, he joined India’s first
cognitive science program (Center for Behavioral and Cognitive Sciences, University of
Allahabad) as a faculty member. He is currently a visiting research scientist at the Inter-
active and Intelligent Computing Division, Georgia Institute of Technology, USA. His
research focuses mainly on the internal mechanisms underlying situated and distributed
cognition, particularly epistemic structures and epistemic actions. He is also interested in
simulation/enaction theory, imitation, social cognition, technological applications of
embodied cognition, and behavioral economics.



Chandrasekharan & Stewart Origin of Epistemic Structures 353

Terrence C. Stewart is completing his Ph.D. at the Institute of Cognitive Science at Car-
leton University, Canada. He received his M.Phil. in computer science and artificial intelli-
gence at the University of Sussex, UK, and his B.A.Sc. in systems design engineering at
the University of Waterloo, Canada. His work involves whole-agent modeling of both
high- and low-level cognition, comparisons between modeling frameworks, philosophy of
modeling, and making computational modeling accessible for a broader range of
researchers. E-mail: terry@ccmlab.ca


