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Abstract: Reasoning about the structure and behavior of physical phenomena using abstract 

and concrete models (model-based reasoning, MBR) is a key thinking skill in science and 

engineering practice. One of the key areas MBR is introduced in the curriculum, particularly 

the use of abstract models, is applications of trigonometry, such as calculating heights and 

distances. In India, high school and pre-college (9-12 Grades) trigonometry curricula include 

three broad MBR cases: i) heights and distances (ratios in right triangles), ii) resolution and 

addition of vector quantities (projections in a unit circle to give the rectangular components), 

and iii) periodic systems (represented as sinusoidal functions). Students find trigonometry and 

its MBR applications difficult to understand, possibly because reasoning in this domain 

requires handling cognitive (internal/abstract) operations and symbolic (external/concrete) 

operations simultaneously, in different and complex ways, across these three MBR cases. A 

particular source of difficulty is the relationships between these trigonometric operations, 

which are not clear across the three cases. We are developing an interactive new media system 

to help students learn model-based reasoning, based on MBR applications of trigonometry. 

Here we focus on vector resolution and addition, a key application supporting MBR. In the 

existing curricula, trigonometric and other concepts related to vectors are scattered across 4 

textbooks, and students find it hard to integrate these scattered concepts. We report a study 

outlining how the new media tool helped students integrate the concepts involved in vectors, 

and the insights from the study for redesign, particularly to support MBR. 
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1. Introduction 

 
Reasoning using models is a central thinking skill in science and engineering. According to Gilbert 

(2004), models “function as a bridge between scientific theory and the world-as-experienced 

(‘reality’). They can be simplified depictions of a reality-as-observed, produced for specific purposes, 

to which the abstractions of theory are then applied. They can also be idealisations of a possible 

reality, based on the abstractions of theory, produced so that comparisons with reality-as-observed can 

be made". Trigonometry is one of the key mathematical topics where students learn model-based 

reasoning (MBR) in the later high school curricula. It is also a topic with wide applications in 

advanced mathematics, physics and engineering. Research studies (Gur, 2009; Jackson, 1910; Orhun, 

2004; Yusha’u, 2013) report that teachers and students find trigonometry a hard concept to teach and 

learn. Byers (2010) reports a detailed study of trigonometric representations in the Canadian curricula, 

particularly in the transition from the secondary school to college mathematics, and points out many 

potential sources of difficulty for students. Gur (2009) also identifies these problem areas, and 

suggests that the difficulties come from the complex nature of trigonometric symbols. 

In India, trigonometry is introduced to students during the later parts of high school, as part of 

Mathematics, along with many applications across Physics. There are three kinds of model-based 

reasoning applications of trigonometry in the higher secondary curricula in Indian Schools. These 

cases which follow the levels of understanding in geometry proposed by Van Hiele (1986) are: (i) 
Heights and distances: Here a real world scenario is modelled by a right triangle. Trigonometric ratios 

are used to link the angles (of observation) and the lengths of the triangle (heights and distances). This 

is one of the first applications of trigonometry, introduced after the basic definitions. (ii) Resolution 

and Addition of Vectors: Diverse applications in physics are modelled using vector operations, 

ranging from resolution and addition to products of vectors. In 11th and 12th grade physics, various 

physical quantities are introduced as vectors (displacement, velocity, acceleration, force, momentum, 
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angular velocity etc.). Vector operations involving trigonometry are used to solve problems such as 

finding resultant forces, conserving momenta, and the effect of a set of torques. (iii) Sinusoidal 

Systems: Trigonometry is used to model phenomena with periodically changing physical quantities. 

In physical systems (like a spring mass system or a simple pendulum), chemical and electrical 

systems, periodically varying physical quantities can be modelled using a sinusoidal curve. Here the 

notion of trigonometric ratios as functions of angles is used.  

Here we focus on the case of model-based reasoning using vector resolution and addition. 

Byers (2010) suggests that students find vectors difficult due to unfamiliarity. Difficulty in handling 

vectors leads to problems in handling Newtonian Dynamics (White, 1983). Students have trouble 

understanding the wide range of modeling applications of vector concepts, as it is difficult to follow 

how the vector concepts model the various real world cases. Resolution and addition of vectors thus 

provides a rich context to explore students' understanding of model-based reasoning using 

trigonometry, its applications in physics, and how new interactive media could address learning 

problems in this domain. 

 

 

2. Textbook Analysis 
 

We first analysed the textbooks in one of the provinces in India (Maharashtra), to understand the 

manner in which vector concepts are covered. Since the topics related to vectors are spread across 

mathematics and physics textbooks (grades 9-11), we were interested in documenting the missing 

conceptual links, both within a text book and between text books. 
Figure 1 shows a concept map of how topics are covered and applied in the physics 

curriculum. Addition of vectors is introduced geometrically using the Triangle Law and Parallelogram 

Law of vector addition. The Triangle law is just stated, and no connection is made to properties of 

vectors. The conceptual gap thus gets carried over to the Parallelogram and Polygon Laws, which are 

proven based on the Triangle Law. Addition of vectors is thus not properly scaffolded. 

Different representations of the same vector as a geometrical entity (an arrow mark ↗ with 

magnitude and direction) and as an algebraic entity (the rectangular components form) are interrelated 

using the operation called Resolution of vectors. The textbook does not clarify how both these 

representations denote the same vector. This could lead to students treating a vector under geometrical 

and algebraic descriptions differently, without a unified perspective. Similarly adding two vectors 

geometrically (using triangle and parallelogram laws) and algebraically (adding rectangular 

components) may be perceived as two entirely different operations, and hence need scaffolding to 

understand how they lead to the same resultant vector. The text book does not provide an integrated 

understanding of geometric and algebraic representation of a vector.  

Further, textbooks don’t emphasize the notion of Resolution as an inverse operation of 

addition (adding the component vectors back will give the initial vector which was resolved). This 

leads to a weak understanding of the nature of these operations, and difficulty in understanding the 

nature of vectors and components in situations such as a changed frame of reference (like a rotated 

frame in an inclined plane) and also the possibility of non rectangular components of vectors. The 

conceptual issues here will be carried over to all the connected chapters (right block in Figure 1, 

various chapters in mechanics as well as electricity and magnetism). 

A central finding from this analysis was that a key transition in learning vectors -- 

understanding the translation between the geometric mode and the algebraic mode -- is not well 

scaffolded. The role of trigonometric ratios, which are employed in this transition, is also not 

discussed. Given the way the chapters are sequenced in the physics and the math curriculum, students 

have little support to understand and master the application of trigonometry in the context of vectors. 

An analysis of the Mathematics text books in the previous grades (blocks to the left in Figure 

1) showed that trigonometry is introduced first in Grade 9. Till Grade 10, the text covers the basic 

definitions, and applications to the problem of calculating heights and distances. A brief mention of 

trigonometric ratios with varying angles is made in Grade 10. However, these connections are not 

emphasized enough, for the student to apply trigonometry in the context of resolution of vectors when 

they move to Grade 11. The mathematics textbook for Grade 11 discusses trigonometric functions, 

but with no direct applications in the context of vectors. 
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Figure 1. Vector concepts covered in Physics and Mathematics Text books (Maharashtra State). 

Dotted lines represent improper scaffolding, which could lead to potential conceptual gaps. 

 

The current state of the textbooks and curricula leave the students without enough scaffolding 

to understand the vector concepts. These improperly understood concepts, when carried ahead to 

further abstract topics, leave the students highly prone to conceptual confusions, and an inability to 

make sense of symbolic manipulations and their roles. The only way out for them is to rote learn or 

devise tricks like Fatima rules (Aikenhead & Jegede, 1999; Larson, 1995). 

To check if issues identified by the textbook analysis resonated with teachers, we did a round 

of interviews with 3 grade 11 physics teachers and 1 mathematics teacher. The focus was problems 

they found when teaching, and also gaps in student understanding, in the context of vectors and its 

applications. The interviews were semi-structured, and the teachers used paper to explain when 

needed. All discussions were recorded for further analysis. The inputs from teachers varied with 

teaching experience. For example, all teachers noted students' difficulty in resolution and addition of 

vectors, and finding dot and cross products. But the reasons cited by the teachers varied from 

procedural aspects (inability to solve a determinant to find cross product; confusions about 

trigonometric ratios in vector resolution; using the formulae for dot and cross products) to conceptual 

aspects (not understanding the notion of direction of a vector, and the geometrical addition in a 

triangle giving the resultant). 

 

 

3. Design of the Tool 
 

We have developed a new media intervention to address the concept integration issues identified by 

the textbook analysis and teacher interviews. Computational media is a new way to introduce students 

to complex mathematical content (Kaput and Roschelle 2013; Kaput 1992; Kaput et al. 2002; Hoyles 

and Noss 2003). Systems with embodied interactions have been recently found useful in learning 

abstract mathematical concepts (Sinclair & Heyd-Metzuyanim, 2014). These studies support the idea 

that mathematical cognition, and symbolic cognition in general, could be understood as embodied 

cognition (Ottmar, Weitnauer, Landy, & Goldstone, 2015; Landy et al., 2014). Our design approach is 

inspired by these developments in the cognitive and learning sciences. New media systems to learn 

trigonometry are not new (F.H. Lotfi and Mafi E 2012; Zengin et al. 2012), but existing systems deal 

with very preliminary concepts, and the design and studies are not based on ideas from cognitive and 

learning sciences. Our approach is based on learning sciences, identifying key gaps in the curricula, 

particularly in integration of concepts. The design of the tool is based on embodied cognition theory, 

where we seek to develop a system that allows students to learn vectors, and more broadly MBR, in 

an integrated fashion using embodied interaction. 

The current prototype is built using JavaScript, and supports learning of vector resolution, 

addition (dominantly triangle law) and understanding vector components. A demo video of the 

computer based tool is provided as supplementary material. The tool as in Figure 2 (left), allows the 

user to create a vector by clicking or tapping the screen in the larger left panel, and change its 
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magnitude and direction by manipulating the vector. The learner can view right triangle projections 

and the rectangular components. Side panels always show the right triangle projected on the x-axis, 

and the circles of all the vectors on the screen. Two vectors can be added to see the resultant as in 

Figure 2 (right) using the triangle law of vector addition. The changes in the magnitude and the 

direction of any of the component vectors results in a corresponding change in the resultant vector.  

 

 
Figure 2. Snapshot of the intervention tool (left): Addition mode (right) 

 

Simultaneous presence of components and the geometric changes modelled using the unit 

circle (vector inscribed in a circle), could scaffold the gap identified in the Textbook analysis. This 

feature also allows dynamic real time embodied interaction with vector elements, allowing learning of 

direction and magnitude, and also understanding how trigonometry is related to the components of 

vectors. The system thus allows learning both the nature of vectors and that of operations such as 

resolution and addition, in relation to their components. The possibility of numerous components and 

notion of non-rectangular components can be modelled using this tool. 

 

 

4. The Study, Data Collection and Analysis Framework 
 

A group of grade 11 students (n=49), who had finished their academic year dealing with vectors in 

physics, were first given a short written pre-test with 9 questions (to test pre-requisites and resolution 

and additions of vectors, as well as components and connections with trigonometry). From this group, 

8 students were chosen (representing the range of good and bad performance) based on their 

responses in the pretest, and ability to externalise their understanding using text or diagrams. This 

group (n=8) was interviewed in the context of their pretest responses, to get a better understanding of 

their existing understanding.  

 
Figure 3. Concepts and the linkages 

 

From this group, 6 students attended the intervention sessions, which involved performing 

tasks on the interactive vector system for about 70-90 minutes. These tasks were designed to make the 

students explore various features in the tool. Sample tasks were described in a video in the 

supplementary material. Their actions were recorded using video, written scripts (rough work), screen 



capture, and eye tracking (Tobii X2-60). After about a week, these 6 students were given a post test 

similar to the pretest (without prerequisite questions) followed by an interview in the context of their 

test responses. 

Figure 3 shows the topics probed, categorised into three Broad Concept Areas (BCAs), which 

are further categorised into 5 sub concept areas (SCAs). These concept areas constitute 16 links 

between concepts (CLs). The pre and post test answers of all the 6 students were each analysed by 3 

raters, and ratings were given to all relevant CL-question pairs. A 5-point rating scale for conceptual 

understanding (1 = no indication, 5 = strong indication) was developed for each of these concept 

links. This structure is based on studies examining the shift from conventional problem solving 

approach (prescribed in the text book) to a more conceptually sound explanation and judgments 

(Niemi 1996; Besterfield-Sacre et al. 2004; Gerace et al. 2001). The scale does not measure the 

correctness of the response, but rates the conceptual clarity of that particular concept link, as 

expressed in the answer to a given question. 

If 2 or more raters found a concept link-question pair irrelevant, that pair was deemed 

irrelevant, irrespective of the third rater's rating. Inter-rater reliability was estimated using a weighted 

proportion of agreement (‘2/3’ for two raters agreeing, and ‘1’ for three raters agreeing). If only one 

rater found a pair irrelevant, the agreed rating of the other two raters was used. The final score for 

each concept link-question pair is taken as the mode of the three ratings for the cases with agreement. 

For cases where all the ratings varied, further discussions led to 2 raters coming to a consensus. This 

exercise ensured an inter rater reliability of more than 67% across all the raters and the CL-question 

pairs. The ratings (converted to percentages) denote the strength of the CLs. This provides a 

comprehensive picture of the strengthening of specific CLs after interacting with the system. 

 

 

5. Results and Discussion 

 
Figure 4 (bar graph) shows the proportion of students whose understanding improved across each of 

the 5 SCAs (SCA1- Triangle Law; SCA2- Parallelogram Law, SCA3-Rectangular components, 

SCA4-Non rectangular components, SCA5-Application in context of forces). The colored lines 

capture the change in conceptual understanding (from pretest to posttest) of each student. The slope of 

each line captures the growth achieved by the student in the understanding of the CLs in that 

particular SCA. 

 
Figure 4. Conceptual understanding growth trajectories across Sub Concept Areas 

 

Students improved in all SCAs, but in different ways. SCA1, SCA4, SCA5 show 3 students 

improving in their conceptual understanding. Four students improved in SCA1 (triangle law), which is 

expected, as the interactive system is predominantly based on triangle law. The parallelogram law 

(SCA2) is not very explicitly expressed in the system, but 3 students improved in this SCA. The two 

drops were about 2-3%. S6's drop in performance could be attributed to disruption in concept areas 

SCA3 and SCA4, related to components and addition. Surprisingly, only 3 students improved in the 

rectangular component (SCA3), even though rectangular components were part of the system. The 



improvement for this SCA was not more than 5-6%, this suggests this aspect of the tool needs to be 

redesigned. All the students whose performance dropped had pretest percentages around or more than 

60%. This suggests that the system disrupted their existing concepts. SCA3 and SCA4 are closely 

related to components of a vector, and 5 students showed conceptual growth in SCA4, which pertains 

to non-rectangular components. Interestingly, all 3 students with weakened conceptual understanding 

in SCA3 (S2, S5, S6) have shown growth in SCA4. SCA5 (applying vectors and vector operations in 

the context of forces) improved in all students. Qualitative analysis of interviews showed comments 

supporting the above observations. 

The above data suggests that the interaction with the system helped students improve their 

understanding of vectors in two ways: 1) understanding of triangle law and the non-rectangular 

components, and 2) the related disruption in their understanding of rectangular components. The 

students' interaction process is currently being analyzed for further insight to redesign the system. 

 

 

References 

 
Aikenhead, G. S., and O. J. Jegede. 1999. “Cross-Cultural Science Education: A Cognitive Explanation of a 

Cultural Phenomenon.” Journal of Research in Science Teaching 36 (3): 269–87. 

Besterfield-Sacre, M., and J. Gerchak. 2004. “Scoring Concept Maps: An Integrated Rubric for Assessing 

Engineering Education.” http://onlinelibrary.wiley.com/doi/10.1002/j.2168-9830.2004.tb00795.x/abstract. 

Byers, P. 2010. “Investigating Trigonometric Representations in the Transition to College Mathematics.” 
College Quarterly 13 (2).  

F.H. Lotfi, and Mafi E. 2012. “Efficacy of Computer Software on Trigonometry.” Applied Mathematical 

Sciences 6 (5): 229–36. 

Gerace, W. J., R. J. Dufresne, W. J. Leonard, and J. P. Mestre. 2001. “Problem Solving and Conceptual 
Understanding.” Proceedings PERC. http://piggy.rit.edu/franklin/perc2001/Gerace.pdf. 

Gilbert, J. K. 2004. “Models and Modelling: Routes to More Authentic Science Education.” International 

Journal of Mathematical Education in Science and Technology 2(2). Kluwer Academic: 115–30. 

Gur, H. 2009. “Trigonometry Learning.” New Horizons in Education 57 (1). ERIC: 67–80. 

Hoyles, C., and Noss, R. 2003. “What Can Digital Technologies Take from and Bring to Research in 
Mathematics Education?” In Second International Handbook of Mathematics Education, 323–49. Springer. 

Jackson, W. H. 1910. “A simplification in elemntary trigonometry.” The Mathematics Teacher 3 (1). 21–23. 

Kaput, J. J., and Roschelle, J. 2013. “The Mathematics of Change and Variation from a Millennial Perspective: 
New Content, New Context.” In The SimCalc Vision and Contributions, edited by Stephen J. Hegedus and 
Jeremy Roschelle, 13–26. Advances in Mathematics Education. Dordrecht: Springer.  

Kaput, J., Noss,R. and Hoyles, C. 2002. “Developing New Notations for a Learnable Mathematics in the 
Computational Era.” Handbook of International Research in Mathematics Education.  

Kaput, J. J. 1992. “Technology and Mathematics Education.” In Handbook of Research on Mathematics 
Teaching and Learning, edited by D. A. Grouws, 515–56. MacMillan Publishing Company. 

Landy, D, Allen, C., and Zednik, C. 2014. “A Perceptual Account of Symbolic Reasoning.” Frontiers in 

Psychology 5 (April): 275. 

Larson, J. O. 1995. “Fatima’s Rules and Other Elements of an Unintended Chemistry Curriculum.” ERIC. 
Annual Meeting of the American Educational Research Association (San Francisco, CA). 

Niemi, D. 1996. “Assessing Conceptual Understanding in Mathematics: Representations, Problem Solutions, 
Justifications, and Explanations.” The Journal of Educational Research 89 (6). 351–63. 

Orhun, N. 2004. “Students’ Mistakes and Misconceptions on Teaching of Trigonometry.” Journal of 

Curriculum Studies 32 (6), 797–820. 

Ottmar, E., Weitnauer, E., Landy, D., and Goldstone, R. 2015. “Graspable Mathematics: Using Perceptual 
Learning Technology.” Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics 

Education. IGI Global, 24. 

Sinclair, N., Heyd-Metzuyanim, E. 2014. “Learning Number with TouchCounts: The Role of Emotions and the 

Body in Mathematical Communication.” Technology, Knowledge and Learning 19 (1-2): 81–99. 

Van Hiele, P. M. 1986. Structure and Insight: A Theory of Mathematics Education. dialnet.unirioja.es. 

White, B. Y. 1983. “Sources of Difficulty in Understanding Newtonian Dynamics.” Cognitive Science. Wiley 

Online Library. http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog0701_2/abstract. 

Yusha’u, M. A. 2013. “Difficult Topics in Junior Secondary School Mathematics: Practical Aspect of Teaching 

and Learning Trigonometry.” Scientific Journal of Pure and Applied Sciences 2 (4): 161–74. 

Zengin, Y., Furkan, H., Kutluca, T. 2012. “The Effect of Dynamic Mathematics Software Geogebra on Student 
Achievement in Teaching of Trigonometry.” Procedia - Social and Behavioral Sciences, 31: 183–87. 


	References

