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Abstract 

Humans build novel tools, external knowledge structures 
(markers, maps etc.), and internal structures (analogies, 
mental models etc.) to facilitate cognition. Humans also 
recombine these building strategies to suit any task. Other 
organisms generate such structures as well, but they use them 
to optimize single tasks. This suggests that the human species' 
cognitive advantage stems from the capability to recombine 
built structures, and the resulting extended mind. 
Chandrasekharan & Stewart (2007) hypothesized that this 
capacity could emerge from reinforcement learning. We 
tested this proposal, by studying three foraging models, which 
examined whether novel recombinations of building (external 
and internal navigation structures) emerged in reactive agents, 
from just reinforcement learning. Results showed that 
recombination does not emerge with just reinforcement. This 
was because the building of external structures provided a 
very high reward profile, including free riding, thus acting as 
an attractor, blocking the recombination strategy. We discuss 
the implications of these results. 
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Introduction 

The human mind is a rare adaptation (Donald, 1998). Its 

rarity stems from the following four building 

(Chandrasekharan, 2009; Chandrasekharan & Nersessian, 

2015) and incorporation (Maravita & Iriki, 2004; 

Chandrasekharan, 2014) strategies, which together set apart 

human cognitive practices from that of other organisms. 

 The capacity to build external physical structures 

(including tools), and incorporate (i.e. integrate 

with the body) such structures made by others. 

 The capacity to build external knowledge 

structures (including markers, maps and language), 

and incorporate (i.e. integrate with internal 

structures) such structures made by others. 

 The capacity to build new internal structures (such 

as landmark grids, categories, analogies, and 

models) based on interaction with tools and 

external knowledge structures, and incorporate (i.e. 

integrate with internal structures) such internal 

structures when they are externalized by others. 

 The capacity to recombine these building and 

incorporation strategies, to perform better in any 

task. 

The first three strategies are present to some extent in 

other organisms (Laland, Odling-Smee, & Feldman, 2000), 

including insects  (Mhatre, 20018; Mhatre & Daniels, 2018; 

Bradbury & Vehrencamp, 1998; Sanders et al, 2015). 

However, the building processes are usually limited to 

particular tasks (such as building of nests, rudimentary 

tools, signaling structures and internal landmarks). 

The presence of these strategies in other organisms, and 

the absence of human-like cognitive practices in these and 

other organisms, together suggests that the rare mind that 

sets humans apart emerges from the recombination strategy, 

which allows the first three strategies to be combined 

fluidly, across any task (Vygotsky, 1980). 

The first strategy has mostly been studied in anthropology 

(Tomasello, 2009), though there are some recent 

neuropsychological (Putt et al, 2017) and behavioral studies 

(Emery & Clayton, 2009) as well. The second strategy has 

been studied empirically to some extent within the 

Distributed Cognition framework (Hutchins, 1995; Kirsh, 

2010; Chandrasekharan, 2009), and analysed conceptually 

within the Extended Cognition framework (Clark & 

Chalmers, 1998; Menary, 2010; Adams & Aizawa, 2008). 

There is significant empirical and analytical work on the 

third strategy (Pulvermuller, 2001; Nersessian, 2010). 

However, very little known is about the recombination 

strategy, particularly how it emerges, and the 

cognitive/neural machinery that is involved. This is mostly 

because the process of building external physical and 

knowledge structures is poorly understood. As Schwartz and 

Martin (2006) observes, “most cognitive research has been 

silent about the signature capacity of humans for altering the 

structure of their social and physical environment.” Even in 

the study of internal structures, most studies have focused 

on their use, rather than the process by which they are built. 

Chandrasekharan & Stewart (C&S, 2007) presented a 

preliminary model of the process leading up to the building 

of external knowledge structures. They showed that 

reinforcement learning could lead to the emergence of a 

stable building process, where agents learn to systematically 

generate external knowledge structures (termed 'epistemic 

structures') within their lifetime. In this model, reactive 

agents (agents that only sense and act) learn to 

systematically build epistemic structures to optimize food 

foraging behavior (ES model, figure 1). Each agent could 

initially drop two chemicals (in analogy to pheromones) 

randomly (in analogy to perspiration), during a food-

gathering task. They could also follow the dropped 

pheromones in some random instances. Pheromones could 



be dropped only when an agent was still, and every action 

an agent made (dropping pheromones, following 

pheromones, wandering) had a energy/tiredness cost. Given 

this basic structure, and a reinforcement learning algorithm 

(Q-learning) that selected agent actions to lower the energy 

cost, the agents learned over time to systematically build 

pheromone structures, and maximize food gathering based 

on this building behavior. 

C&S then extended this basic building structure (random 

behavior moving to systematic building, based on feedback 

about energy use), to develop a Trace model (figure 1), 

which examined whether reactive agents, with the capability 

to drop two random traces (A,B) in an internal neural 

network, could learn to generate these traces systematically 

in relation to two landmarks (Home and Target). This type 

of systematic generation of traces could be considered 

equivalent to the building of a rudimentary version of a 

place cell (Sanders et al, 2015). Results showed that the Q-

learning algorithm allowed the agent to generate such a 

place-cell-like structure, by systematically 'grounding' the 

initially random internal traces to the landmarks (A only at 

Home and B only at Target, or vice versa), and maximize 

food gathering based on this internal structure. 

Recombinant Building 

These models showed that systematic building of ESs and 

Traces could emerge from random behavior, based on the 

same underlying reinforcement learning mechanism. C&S 

then hypothesized that since the underlying learning model 

is the same, the two strategies could easily be recombined, 

and reinforcement learning could thus account for the 

emergence of extended minds. 

However, extended minds do not exist widely, as would 

be expected if reinforcement learning is enough to generate 

such minds. We therefore tested this hypothesis, by 

developing a Recombinant Building model (Figure 2). This 

model is based on the basic structure of the ES model 

reported by C&S. To test the possibility of recombinance, 

we added the Trace model's capabilities to the ES model. 

That is, apart from the ES actions, agents could also drop 

two types of traces randomly in an internal network. 

Our hypothesis was: reinforcement based on tiredness 

would lead to the  emergence of a recombinant building 

strategy, where internal traces and external structures would 

be recombined systematically, thus developing a more 

optimal building strategy than the ES one, to solve the food-

gathering task. One example of a recombinant building 

behavior would be reaching Home and recognizing Home 

(based on the systematic activation of the Home trace in this 

location), and then on dropping only target pheromones, 

until Target is reached. For the Target location, the 

equivalent recombination would be recognizing Target, and 

then on dropping only home pheromones, until Home is 

reached. Another example would be storing a trace of the 

pheromone level in each location, and then lowering/raising 

the generation of pheromones, based on this trace. 

This operationalisation of the recombinant building 

hypothesis was investigated using four studies.  

Study 1 was a baseline, replicating the original ES study 

(Figure 4). The only minor change was in the exploration 

rate, which was set to decrease steadily. Also, each 

simulation (100 trials) ran for a million time steps, instead 

of the maximum of 3000 reported in the C&S study. 

In study 2, we added to each agent the ability to drop two 

traces in an internal neural network. The structure of this 

internal network trace was exactly the same as reported in 

the C&S model. 

In study 3, instead of storing traces of Home and Target, 

which are stable states of the world, the agents could store 

traces of the levels of Home Pheromone and Target 

Pheromone, which are transient states of the world. 

In study 4, agents could store traces of both permanent 

and transient states of the world (Home, Target and the 

levels of Home Pheromone and Target Pheromone). 

The architecture of the system and the main results are 

outlined in the sections below. For more details see the code 

(recombinant.surge.sh). See the C&S paper for other details 

of model design and their rationale. 

Model Architecture 

World: Following C&S, the task was analogous to foraging 

behavior (i.e. navigating from a home location to a target 

Figure 1: Model architecture used by C&S, for the Epistemic Structure (ES) model (Left) and the Trace model (Right). 



location and back again). The environment consisted of a 30 

× 30 toroidal (doughnut-shaped) grid world, with one 3 × 3 

square patch representing the agent’s home, and another 

representing the target (as depicted in figure 3). This target 

was the food source. 

 

 Figure 3: The world grid. The big blue square is the 

Target, the big red square is the Home. The small bright red 

squares are agents without food. The small bright blue 

squares are agents with food. The faded red color indicates 

dropped home pheromones, and the faded blue color 

indicates the dropped target pheromones. 

Reinforcement Learning: Q-learning was used as the 

reinforcement learning algorithm. It was present in every 

agent, and sought to minimize individual energy 

expenditure while foraging. The space of states and actions 

for study 1 is shown in figure 1 (ES architecture). Figure 2 

shows the same for studies 2, 3 and 4. The different inputs 

to the neural network for these studies are also shown. 

Neural Network: The neural network was a feedforward 

multilayer perceptron, trained using back-propagation of 

error (Rumelhart, Hinton, & Williams, 1986). It had three 

input nodes, one output node, and three hidden nodes for 

studies 2&3. In study 4, where we combined the transient 

and permanent features, the network had 5 input nodes, 1 

output node, and 7 hidden nodes. The activation function for 

all nodes was the hyperbolic tangent, and the learning rate 

(α) was 0.2. To handle the feedback between the output 

value and the input state, the network was run 100 times. 

Figure 2: (Left) Recombinant Building architecture. (Right) Inputs to the network for the studies. 

Figure 4: Food count and average action 

distribution (per 1000 time steps) for a trial in 

study 1.  



 

Results 

Study 1 

One hundred trials (each with one million time steps) were 

run, with the exploration rate of Q-learning reducing by 1% 

every 100 time steps. Remarkably, in almost all trials, the 

system improved food gathering performance after around 

10000 time steps, by discovering a second optimization after 

the ES one -- free riding (see figure 4 for one such instance). 

All hundred trials converged to the free-riding strategy. 

   The free-riding strategy, which is very stable once 

discovered, is marked by a consistent pattern, where some 

agents only follow pheromones -- they don't drop any 

pheromones (figure 5). They thus free-ride on the work of 

agents that do the pheromone dropping actions. More 

interestingly, across agents, the pheromone following 

actions (follow home, follow target) dominate, forming the 

largest action component. Dropping actions (drop home 

pheromone, drop target pheromone) are present in relatively 

smaller proportions. There are thus two optimizations: one 

where individual agents move to just following pheromones, 

and secondly, the colony as a whole lower dropping actions 

in general. This 'super-optimization' result was missed by 

C&S, as they ran less time steps.  

Once this action pattern sets in, the food collection 

increases dramatically across agents. This is because the 

dropping actions, which require energy and staying still, are 

less overall. The dropping actions do not lead the agent 

Figure 5: Action distribution of agents (per 1000 time 

steps) in a trial of study 1. Notice some agents only follow 

pheromones. They are 'free riders'. 

 
Figure 6: Average action distribution for study 4. The top 

one shows the average action distribution in a trial where free-

riding emerged. The graph below shows the average action 

distribution during a trail when free riding did not emerge. 



closer to the Home or Target. As would be expected, 

individual free riders perform better than agents who drop 

pheromones, as they make more movement actions than 

their dropping counterparts, who stay still while dropping.   

Study 2,3&4 

As discussed, these studies examined the recombination 

hypothesis, by providing agents with both external and 

internal actions. Each study examined different internal 

actions, where the inputs given to the internal neural 

networks were different (see figure 2). One hundred trials 

(each with one million time steps) were run for each study.  

   Results showed that in each study, either the system did 

not perform well, or it settled into the free riding strategy, 

where the performance was at par with study 1. Figure 6 

shows an example of both these cases.  

   In most of trials where the system settled into free riding, 

only the dropping and following actions were present. Table 

1 provides an overview of the emergence of the free-riding 

strategy across these studies. In a few cases, dropping 

internal traces and move randomly actions were also 

present, usually in only one agent among the 10 agents. 

Figure 6 shows such a case where dropping of trace A was 

also present. Figure 7 shows a comparison of foraging 

performance (food collected per 1000 time steps) across 

time where free riding was present vs. where it was not. 

Table 1 also logs this performance. 

Table 1 (per 1000 time steps) 

Name Iterations 

where free 

riders were 

present 

Free riding 

Performance 

Avg(std) 

Non-free 

riding 

Performance 

Avg(std) 

Study 2 57 125(35) 2.5(8) 

Study 3 55 132(30) 1.7(6) 

Study 4 29 128(34) 1.6(5) 

Discussion 

The consistent results across the studies indicate three major 

trends: free-riding, the attractor role of external building, 

and the absence of recombination. We discuss each below. 

Free-riding (FR): Across the three recombination cases, 

most agents moved to the ES strategy, in most trials. In 

every trial where this shift happened, FR emerged after 

around 10000 trials. This suggests Q-learning has the 

capability to do super-optimizations over time. However, a 

Tragedy of the Commons (Hardin, 1968) situation, where 

every agent turns into a free rider to maximize individual 

returns and thereby destroy a resource (the pheromone trails 

in this case), did not emerge. These results indicate that Q-

learning, even though embedded within each individual 

agent, managed to discover, and maintain, a globally 

optimal strategy. 

FR is well-documented in biology, and the emergence of 

stability despite FR is usually attributed to mechanisms 

wider than the organism, such as kinship, policing and 

diminishing returns (Rankin, Bargum, & Kokko, 2007). Our 

results suggest that a within-organism feature -- the 

estimates of reward made by reinforcement learning -- could 

also lead to stable behavior when FR is present. Overall, the 

FR result provides significant support to the ES model 

presented by C&S, as it is close to behavior seen in nature, 

and emerged inadvertently, based on a mechanism different 

from commonly cited ones. 

The attractor role of external building: Most trials saw 

the recombinant models moving predominantly to the 

external structure strategy. This suggests building stable 

internal structures is either difficult, or not optimal, when 

external building is also possible. 

In contrast to this result, internal structures such as place 

cells and grid cells are more widespread in nature than built 

trails, possibly because built external structures are 

transient. Building internal structures like grid cells allow 

organisms to navigate using more stable properties of the 

world (like landmarks), and also navigate in air and water, 

where trails cannot be built and maintained easily. 

Our results suggests that such internal structures are 

generated only in cases where building external structures is 

not an option, as the possibility of building external 

structures would lead to the learning system getting 

attracted to this strategy, given its better reward profile. A 

corollary is that organisms which navigate mostly using 

built external structures (usually lower organisms) could be 

considered as developing a niche that requires, and thus 

leads to, minimal neural development, as the building of 

external structures limit the emergence of complex 

landmark-based navigation, and related neural complexity. 

Even though the C&S study showed that rudimentary 

landmarks could emerge from reinforcement learning, it is 

unclear whether a wider navigation system, where many 

landmarks are stored using complex grid-cell-like structures, 

could emerge just from reinforcement learning. It is possible 

Figure 7: Foraging performance when free riding was 

present and absent. 



that mechanisms other than reinforcement learning are 

recruited in the development of complex internal storage 

systems such as grid cells.  

A candidate mechanism could be learning based on 

'offline' simulation of stored events (Schubotz, 2007). Such 

simulation is possible through the re-activation of the traces 

stored in the grid cells (Buzsáki & Moser, 2013). 

Interestingly, the C&S model shows that this simulation 

capability could emerge from just reinforcement learning. 

This is because the storage of internal memories emerge 

solely from actions in the C&S model. Such memories are 

thus 'constituted' by actions, and they thus embed action 

possibilities, which can be simulated offline, to generate 

feedback for reinforcement. 

Absence of Recombination: Given the starting premise 

(the absence of human-like cognition in other organisms), 

and the inability of the models in our study to recombine the 

two building strategies (probably due to the attractor role 

played by the ES strategy), a possible interpretation could 

be that mechanisms other than reinforcement (such as 

simulation, metacognition etc.) are needed for the 

emergence of the recombination strategy. However, such an 

interpretation is not justified at this point, for three reasons. 

First, our implementation expected the agents to learn 

both the building strategies, as well as recombine the 

strategies, in real-time. This is unrealistic, as organisms 

have the possibility of stabilizing each building process 

(external storage, internal storage) first, and then 

recombining them.  

Second, more sophisticated reinforcement learning 

algorithms, such as Deep Q-learning, could allow the model 

to discover the recombination strategy. We are currently 

testing this possibility. 

Finally, the models reported here assume there is only one 

reinforcement learning mechanism. This is also unrealistic, 

as each building process could have its own reinforcement, 

and the two reinforcement systems could be working in 

tandem, with positive feedback loops between them. It is 

currently unclear how such a system could be implemented. 
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