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ABSTRACT
Multiple external representations (MERs) are central to the practice and 
learning of science, mathematics and engineering, as the phenomena and 
entities investigated and controlled in these domains are often not available 
for perception and action. MERs therefore play a twofold constitutive role in 
reasoning in these domains. Firstly, MERs stand in for the phenomena and 
entities that are imagined, and thus make possible scientific investigations. 
Secondly, related to the above, sensorimotor and imagination-based 
interactions with the MERs make possible focused cognitive operations 
involving these phenomena and entities, such as mental rotation and 
analogical transformations. These two constitutive roles suggest that 
acquiring expertise in science, mathematics and engineering requires 
developing the ability to transform and integrate the MERs in that field, 
in tandem with running operations in imagination on the phenomena 
and entities the MERs stand for. This core ability to integrate external and 
internal representations and operations on them – termed representational 
competence (RC) – is therefore critical to learning in science, mathematics 
and engineering. However, no general account of this core process is 
currently available. We argue that, given the above two constitutive roles 
played by MERs, a theoretical account of representational competence 
requires an explicit model of how the cognitive system interacts with external 
representations, and how imagination abilities develop through this process. 
At the applied level, this account is required to develop design guidelines for 
new media interventions for learning science and mathematics, particularly 
emerging ones that are based on embodied interactions. As a first step 
to developing such a theoretical account, we review the literature on 
learning with MERs, as well as acquiring RC, in chemistry, biology, physics, 
mathematics and engineering, from two perspectives. First, we focus on 
the important theoretical accounts and related empirical studies, and 
examine what is common about them. Second, we summarise the major 
trends in each discipline, and then bring together these trends. The results 
show that most models and empirical studies of RC are framed within the 
classical information processing approach, and do not take a constitutive 
view of external representations. To develop an account compatible with 
the constitutive view of external representations, we outline an interaction-
based theoretical account of RC, extending recent advances in distributed 
and embodied cognition.
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1. Introduction

Modern science deals with entities and phenomena that cannot be directly perceived or acted on, 
because they are too small (atoms, DNA, cells, etc.), too big (galaxies, stars, tectonic plates, etc.) happen 
in timescales that are difficult to perceive (milliseconds – chemical reactions, millennia – evolution), 
and are complex (feedback loops between levels and timescales). Understanding and analysing these 
imperceptible and complex entities and phenomena thus involve imagining and modelling them in 
detail, and developing indirect measures and novel external representations (symbolic elements that 
stand in for the actual entities and phenomena) that help in this imagination process. Multiple external 
representations (MERs) are thus embedded in science practice, and play a constitutive role in developing 
new models, drawing inferences, making predictions, supporting claims and developing consensus. 
Ideas and information in science are distributed across MERs (Johnstone, 1991; Lesh, Post, & Behr, 1987; 
Tsui & Treagust, 2013), and learning and practising science is impossible without gaining expertise in 
interacting with MERs, imagining with them, and learning to generate them.

Imagined mental models, and external representations of these models, are developed over several 
iterations and revisions within science practice, where the internal and the external interact and help 
change each other (Nersessian, 2010). The final internal models and related representations, which 
students are expected to learn in an integrated fashion, are often dense and opaque end-products, 
hiding the historical contexts and the problems through which they evolved. In chemistry, for instance, 
practitioners often use different models of matter, to study, understand, explain and/or synthesise 
substances through various chemical processes, often describing chemical phenomena (such as colour 
change) in terms of molecular level interactions. Chemical phenomena are understood at multiple lev-
els, with the help of representations at each level, such as reaction mechanisms, molecular diagrams, 
graphs and equations. One critical aspect of learning chemistry is developing expertise over these MERs, 
often without an understanding of how and why these particular representations emerged, and why 
they are optimal. Similar expertise over MERs is required to learn and practice other disciplines, such 
as biology, physics, mathematics and engineering.

There is a vast literature that examines the learning of MERs, as well as the use of MERs in science 
practice, particularly integration and transformation of MERs – a skill termed representational com-
petence (RC). These studies are widely dispersed, very often published in discipline-specific venues, 
and there is no well-articulated theoretical framework that helps integrate these disparate studies. A 
coherent theoretical framework to understand the problem of RC is critically needed, particularly given 
the emergence of new computational media that is helping develop novel external representations 
for learning and discovery (Chandrasekharan, 2016; Chandrasekharan & Nersessian, 2015), such as 
video games that embed computational models, and enactable representations of formal systems 
(Abrahamson & Sánchez-García, 2016; Kothiyal et al., 2014). These new media make possible new ways 
to integrate MERs, as well as integrate MERs and internal models, in turn facilitating new ways of thinking 
about phenomena and making discoveries (Chandrasekharan, 2016; Chandrasekharan & Nersessian, 
2015). However, design guidelines for developing such media are yet to be developed, as there is no 
clear understanding of the nature of RC, the key skill the new designs seek to support.

In this paper, we review the existing literature on RC, and outline a theoretical framework that could 
help lead to design guidelines for the development of new media for science learning and discovery. 
Specifically, we argue for a distributed and embodied cognition account of RC, for three reasons:

•  One, current models of cognition reject the classical information processing approach; mental 
processes are now understood as distributed and embodied. Models of RC are models of cognition, 
and thus need to incorporate this theoretical shift, particularly because MERs are external (thus 
distributed), and working with MERs require sensorimotor interaction (embodied interaction).

•  Second, there is a parallel shift in the design of new computational media, where embodied con-
trollers such as Leap Motion, Kinect, Real Sense and Virtual Reality are used to develop new learning 
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experiences (Abrahamson & Sánchez-García, 2016; Dickes, Sengupta, Farris, & Basu, 2016). This 
design approach requires understanding the role of embodiment in RC.

•  Finally, the practice of science is now understood as distributed and embodied (Chandrasekharan, 
2013, 2014; Chandrasekharan & Nersessian, 2015; Nersessian, 2010), and models of RC need to 
reflect this shift in our understanding of science practice.

A central component required to develop a distributed and embodied understanding of RC is a model 
of the way the cognitive system interacts with external representations, as opposed to the view that 
all external representations embed information, that this abstract information is isolated from the 
external structure and pulled inside by the cognitive system (somehow), and that cognition arises 
from the manipulation of this abstract information inside the head. Addressing this issue, recent work 
by Landy, Allen, and Zednik (2014) articulates a distinction between syntactic/semantic approaches 
and constitutive approaches towards symbolic reasoning. In the first approach, symbols in MERs are 
considered to be internalised by the cognitive system, and then processed fully inside, i.e. just using 
neural processes. In the constitutive account, the external symbols are part of cognition, and the exter-
nal operations on them, as well as the sensorimotor processes involved in these operations, are part of 
the cognition process. This argument for the constitutive view gets further support from the fact that 
most scientific phenomena deal with entities not available to perception and action, and therefore the 
understanding of these entities is tightly intertwined with the external structures that stand in for these 
entities. The MERs thus play a twofold constitutive role in cognising these phenomena, as understanding 
these imperceptible entities would be impossible without them, and since MERs are external struc-
tures, operations done on them are a critical component of understanding the entities and processes 
they stand in for. Any account of RC thus requires taking a constitutive view of MERs, and this requires 
providing a model of the nature of this constitutive process, particularly the role played by external 
structures in changing cognition, to generate new ideas. Note that this constitutive view is inclusive, 
and does not deny the ‘standing-in’ (representational) role played by MERs. The representational role 
is in fact a central component of this constitutive approach.

The assumption that all cognitive processing is done just by neural processes, and/or is best done 
just using neural processes, is questioned by Kirsh (2010), who outlines seven ways in which the external 
aspect of external representations, and the sensorimotor interactions with external representations, 
contribute to cognition:

(1)    They change the cost structure of the inferential landscape.
(2) They provide a structure that can serve as a shareable object of thought.
(3) They create persistent referents.
(4) They facilitate re-representation.
(5)    They are often a more natural representation of structure than mental representations.
(6)    They facilitate the computation of more explicit encoding of information.
(7)    They enable the construction of arbitrarily complex structure; and they lower the cost of 

controlling thought – they help coordinate thought.

‘Jointly, these functions allow people to think more powerfully with external representations than 
without. They allow us to think the previously unthinkable’. (Kirsh, 2010). This view suggests a more 
interactive way of understanding why and how MERs help advance scientific reasoning.

However, understanding RC, particularly to provide design principles for developing new media, 
requires moving beyond just the recognition of the cognitive power of external representations: it 
needs a model of how new kinds of imagination are made possible by the coupling of MERs with the 
imagination system (Chandrasekharan & Nersessian, 2015). This coupling is closely related to integration 
of MERs. Since MERs capture different aspects of a phenomenon, they need to be integrated by the 
learner to understand the nature of that phenomenon. Any account of how MERs are used in learning, 
thus, needs to account for this integration process, particularly the role played by interactions with 
MERs and the sensorimotor processes involved in this integration.
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The above three aspects (constitution, power of external representations, integration of external 
representations with the imagination) are not addressed by current work in RC, except in some isolated 
specific cases. In this paper, we seek to address this gap in theory, by outlining a distributed and embod-
ied cognition approach to RC, in two steps. First, we provide a comprehensive review of the existing 
work in RC, by examining the influential RC models (Section 2), and empirical studies (Section 3). A set 
of models and studies discussed under these two sections explicitly appeal to the classical information 
processing paradigm, while some other frameworks and studies implicitly assume classical information 
processing perspectives, but do not endorse this view explicitly. A third set of models and studies are 
neutral on the nature of MERs and RC. There is also a group of models and studies that subscribe to 
recent cognition theories such as distributed and/or embodied cognition. This categorisation based on 
subscription of theoretical models and empirical studies to larger models of cognition is captured in a 
chart. A discipline-based review is also presented for quick review, through boxes for each discipline, 
and a set of tables that brings together the diverse literature in a discipline-based categorisation. We 
then discuss the findings from this review (Section 4). In the second step, we outline a distributed and 
embodied account of RC (Section 5). This is a preliminary account, drawing on related theoretical and 
empirical work on the cognitive science of scientific discovery (Chandrasekharan, 2009, 2013, 2014; 
Chandrasekharan & Nersessian, 2015).

1.1. Review methodology

Three different modes were employed to collect articles for this review: (a) keyword search on the ERIC 
database, (b) keyword search on Google Scholar and (c) articles found relevant through cross-referenc-
ing. The following is a list of keywords used for methods (a) and (b):

scientific representations, learning – multiple representations, RC, RC in biology, RC in science (then the word 
‘science’ replaced with chemistry, biology, physics, mathematics, and engineering), multiple external representa-
tions in science. (the word ‘science’ then replaced with chemistry, biology, physics, mathematics, and engineering), 
multiple representations in science (the word ‘science’ then replaced with chemistry, biology, physics, mathematics, 
and engineering)

Articles found using these keywords were filtered based on their date of publication, relevance and 
major discipline. Only articles published after 1990 were read and analysed (with a few exceptional 
articles from before 1990 included due to their evident influence as well as frequent citations – e.g. 
Johnstone, 1982; Lesh et al., 1987, etc.). Further, only those studies/articles related to cognition research 
on multiple representations were included in the review. Articles exploring other dimensions, such 
as testing of a multi-representational user interface, use of multi-modal representations and social 
significance of multiple representations were not included. Also, investigations of a single representa-
tional system (for instance only drawing) were not included, unless the studies had wider implication/
significance for the understanding of multiple representations.

1.2. Results

The review of the representational competence literature shows that there are very few studies that are 
based on the constitutive view, and most studies implicitly assume the syntactic/semantic approach 
and the classical information processing model. This is a vast literature, with many disparate studies, 
conducted in many different fields. The research on the use of MERs in science education is also very 
diverse, examining everything from children’s ‘scribbling’ on paper, drawing of simple diagrams, mak-
ing sense of the diagrams (reasoning), to complex modelling of scientific phenomena by practitioners 
and working memory models of representational transformations. The following four major findings 
emerged from our review:
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1.2.1. Ambiguity in using the term ‘representation’
Most of the literature uses the term ‘representation’ ambiguously to refer to either internal/mental 
representations or external ones, or both. Very few studies explicitly distinguish external representa-
tions from internal/mental representations. Given this ambiguity, the problem of how the external 
and internal representations interact is rarely discussed or examined, particularly in raising/lowering 
cognitive load (as the studies claim), or improving imagination, while thinking about scientific concepts.

1.2.2. MERs and RC differ across disciplines
The nature of MERs, particularly the roles they play in thinking, differs across science (chemistry, biol-
ogy and physics), mathematics and engineering. Consequently, characterisation of RC differs across 
disciplines.

1.2.3. MERs present a general cognitive difficulty
Despite these differences, there is a consensus in the literature across disciplines that the difficulty in 
mastering MERs underlies many different learning difficulties. Also, studies on the nature of expertise 
show that, in a specific knowledge domain, understanding of representations, and the ability to gen-
erate and use MERs in an integrated fashion (for conceptualisation, discovery and communication) 
are indicative of expertise. These common features suggest that integration of MERs (in other words, 
RC) is a general cognitive difficulty. The general cognitive difficulty takes different forms based on 
discipline-specific MERs.

1.2.4. Focus on classical information processing models
The review shows that the existing accounts of this cognitive difficulty are mostly based on classical 
information processing accounts of cognition, emphasizing the notion of cognitive load, and a ‘mental 
capacity’ to handle the load. A central problem of such capacity models is that they shift the attention 
away from the nature of the internal and external representations, particularly the cognitive mecha-
nisms involved in processing, interacting with and integrating MERs, and possible interventions based 
on such mechanism models. The focus on load and capacity also makes the process of RC development 
appear mysterious. Related classical information processing assumptions underlying studies include an 
explicit focus on working memory, centralised processing of information (indicated by terms such as 
translation, which suggest information from MERs is extracted in some form and then translated into 
another form), and hierarchical levels of processing.

Building on these findings, we outline an account of the cognitive mechanisms involved in MER 
integration, based on recent cognitive theories, particularly distributed and embodied cognition. This 
preliminary account makes explicit its departure from classical cognitivist assumptions, and is proposed 
as a general theoretical framework from which many interventions could follow, including new media, 
classroom interaction, inquiry, and manipulative-based teaching. We emphasize the distinction between 
internal and external representations, considering the two as dynamically coupled through constant 
interactions between the learner and external representations. Our focus is on how different external 
representations are integrated. But since this integration process is closely coupled with the formation 
of an internal model of the domain, our model also considers integration of MERs and internal mod-
els. We suggest that MERs are understood by learners through an ‘incorporation’ process, where they 
become part of, and thus extend, the cognitive system, as well as form and extend the internal model 
of the scientific domain. This incorporation process is considered to be driven by actions/manipulations 
performed on the external representations, as well as through exploring many states of the external 
representations. Further, actions on these MERs (overt as well as covert activation of the motor system) 
facilitate ‘freezing’ and ‘unfreezing’ the different states of MERs, and these operations play a central role 
in MER integration. We explore some of the implications of this mechanism-based account in developing 
interventions in science, engineering and mathematics, particularly interventions based on new-media.
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2. Theoretical accounts of MERs and RC

A wide range of conceptual frameworks have been proposed to capture learning and cognition through 
MERs. We examine two kinds of such models: (1) models based on the relationship between the nature 
of a domain, MERs in that domain and cognition and (2) developmental models. Models under the 
former section are further categorised into three interrelated but different subsets: one set focuses on 
the nature of knowledge in a domain, particularly pertaining to the space–time scales/levels, a second 
category focuses on reasoning through MERs, and a third set concerns mechanisms of MER cognition. 
Developmental models, on the other hand, focus more on the process of learning using MERs through 
stages of development, and are either based on (1) or are independent in a broad theoretical sense.

2.1. Models of MERs and cognition

2.1.1. Relationship between the nature of domain and MERs in that domain
Different scientific domains (biology, chemistry, physics, etc.) differ from each other in certain fun-
damental aspects, such as the nature and scale of problems, investigation methods and data. These 
differences reflect in the nature of MERs used across these disciplines, and models of RC.

One of the first models of the relationships between the nature of a scientific domain, the MERs 
that constitute it, and a learner’s interaction with those MERs, was proposed by Johnstone (1982). 
The model examines the visual-perceptual nature of representations used in science, particularly in 
chemistry. Chemistry MERs include the periodic table, chemical equations, graphs, molecular formulas, 
diagrams of experimental set-ups, diagrams depicting molecules, etc. Each of these conveys different 
information on chemical entities and phenomena. Johnstone’s model, known as the model of ‘three 
thinking levels’, describes the way the discipline of chemistry is conceptually organised around these 
MERs. Box 1 provides a quick summary of the discussion on the nature of chemistry MERs, as well as a 
review of MERs and RC in chemistry education literature.

According to the Johnstone, knowledge in chemistry can be viewed at the following three levels 
(Figure 1):

(a)  Descriptive/functional/macro level, which deals with handling of materials, descriptions of phe-
nomena and their properties, such as colour, flammability and density.

(b)  Representational/symbolic level, which deals with representations of chemical substances and 
phenomena using symbols, formulas, equations and conventions.

(c)  Molecular and explanatory/micro/sub-micro level, which captures the structure of chemical 
substances and phenomena, mechanisms of reactions, and the molecular/atomic interactions 
and changes that underlie chemical phenomena.

The model considers MERs in chemistry as distributed across the three levels of thinking, and learning 
as well as doing chemistry requires, in this view, simultaneously processing the information gathered 
from MERs at all the three levels (this is characteristic of expertise).

Supplementing this model of ‘three thinking levels’ with Baddeley’s model of working memory, 
Johnstone (1991, 2000) attributes students’ difficulties in learning chemistry to the way this schema 
(the conceptual organisation of chemistry) interacts with the limited capacity of the human working 
memory. According to Johnstone, the three-level schema puts significant load on a student’s working 
memory as she attempts to understand a chemical reaction in terms of its equation and/or a graph 
(symbolic level) as well as the molecular mechanism (molecular level) of the reaction. As a result of 
the load, and the limited working memory capacity, students often ignore important features of the 
phenomenon, concentrating only on parts of it.

Several other models in chemistry education research attempt to conceptually organise chemical 
knowledge. Jensen (1998), for instance, replaces ‘macro’ level with ‘molar’ (referring to the perceivable 
stoichiometric ratios of chemical substances handled and used in carrying out reactions), retains the 
molecular level, and defines a third level called the electrical level, at which chemical phenomena 
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Figure 1. Johnstone’s model of three thinking levels.

Box 1. Quick review of research on MERs and representational competence in chemistry.
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are explained using subatomic particles (such as electrons) and their dynamics. Ben-Zvi, Eylon, and 
Silberstein (1988) propose that single-particle modelling is sufficient to describe chemical properties 
of substances (but not physical properties). They then suggest that the sub-micro-level be split into 
single-particle and multi-particle sub-micro-levels of understanding chemical processes. A distinction 
between symbols used to denote chemical substances, and the numbers in stoichiometry, kinetics 
and mechanisms has also been proposed (Garforth, Johnstone, & Lazonby, 1976; Nakhleh & Krajcik, 
1994; Savoy, 1988).

In biology, Kapteijn (1990) proposed a framework of biology MERs in relation to (a) the levels of 
biological organisation, as well as (b) observability of the MERs, i.e. one’s ability to see entities and 
phenomena. Keptejin’s model, similar to the Johnstone’s model, has three distinct levels of MERs, viz. 
macro (organismic), micro (cellular) and molecular (biochemical). According to this model, the ability 
to visualise entities and phenomena at all the three levels limits students’ understanding of biological 
phenomena. Box 2 provides a quick access to the nature of biology MERs, as well as a review of MERs 
and RC in the biology education literature.

Tsui and Treagust (2013) recently proposed a more comprehensive framework of the conceptual 
organisation of biology, termed the cube model, which proposes a three-dimensional knowledge 
structure. In this model, knowledge in biology is spread across three different, but interdependent, 
dimensions and learning in biology is marked by one’s progress along these dimensions (Figure 2):

Box 2. Quick review of research on MERs and representational competence in biology.
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(a)  HTM: Horizontal Translation across Modes of representations, ‘along a continuum of representa-
tions with increasing abstraction from real-life objects and actions to human language’.

(b)  VTL: Vertical Translation across Levels of representations ‘from the symbolic level (explanatory 
mechanisms), the sub-micro-level (molecules), the micro-level (organelles and cells), and the 
macro-level (tissues, organs, systems, organisms, populations, and so on)’.

(c)  HTD: Horizontal Translation across the Domain knowledge of biology, i.e. across evolution – 
homeostasis – energy – matter and organisation – reproduction and genetics, etc.

Items from VTL can have one-to-many relationships with items from HTM, but not necessarily the 
other way around. For example, we often associate the term ‘macroscopic’ (VTL) with ‘observable’ (cor-
responding to worldly objects/actions, maybe even photographs/animations, essentially items along 
HTM). Also, graphs, tables and equations can all be counted under symbolic level or representations. 
However, equations would be strictly symbolic, and cannot be under the microscopic level. The VTLs are 
categories of representations similar to the levels of thinking, whereas HTMs are various modes through 
which information across those categories is obtained, presented and communicated. Although it is 
simple, comprehensive and unified, the cube model has limitations in capturing phenomena occurring 
over large temporal scales, such as evolution (Tsui & Treagust, 2013).

In mathematics, one of the most discussed and widely used conceptual frameworks is the Lesh 
Translation Model (Figure 3), which is a network model developed to investigate student-generated 
representations and (information) translations between multiple representations. The model proposes 
that knowledge in mathematics is structured across five different, but interrelated and interconnected 
modes of representations, viz. (1) concrete/manipulable objects/situations (e.g. physical manipula-
tives such as tangram), (2) pictorial representations such as 2D/3D diagrams, (3) real-life contexts (e.g. 
acts of addition, sharing, etc.), (4) language (e.g. usage of mathematical terms such as ‘addition’ and 
‘subtraction’) and (5) written symbols (symbols denoting mathematical operations). Mathematical 
understanding is reflected in the ability to represent mathematical ideas in multiple ways across these 
five representational modes, and also in making connections and translations among them (Lesh et 
al., 1987). From a pedagogical perspective, the term ‘translation’ emphasises interrelating information 
extracted from one representation with information from another. An expert would be fluent in trans-
lating between these proposed representational modes. The model has driven the conceptualisation 

Figure 2. The cube model.
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and development of a set of specific activities (called model eliciting activities) in mathematics and 
engineering pedagogy (Moore, Miller, Lesh, Stohlmann, & Kim, 2013).

Due to the intertwined nature of physics (Box 3), mathematics (Box 4) and engineering (Box 5), the 
Lesh translation model is equally applicable to MERs in physics and engineering. Manipulable models 
and prototypes of physical and engineering objects, free body diagrams, acts of navigation and motion, 
use of terms such as ‘speed’ and ‘distance’ in language, and symbols denoting physical properties of 
objects and phenomena such as ‘force’ and ‘energy’, are some examples of physics and engineering 
MERs belonging to the five modes of representations, respectively.

As opposed to Lesh et al.’s network model, Roth and Tobin (1997) suggest a linear cascade model to 
explain the relationship between physics learning and practice, and the nature of physics MERs. This 
model emerged from an investigation to understand how teachers (university professors) use and 
translate between MERs while teaching in a physics class, and how this relates to students’ difficulties 

Figure 3. Lesh translation model.

Box 3. Quick review of research on MERs and representational competence in physics.
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in understanding the topic (‘motion of a rolling ball on an inclined plane’). The authors propose a con-
tinuum of abstract and concrete representations, generalised from findings from the nature of MERs 
used in the classroom, to explain how the types of MERs in science, mathematics and engineering 
relate to student difficulties in interrelating information embedded in them. The continuum has more 
concrete representations (such as photographs and pictures of real-world objects/phenomena) on 
one end, more abstract representations (such as equations representing relationships between those 
worldly objects and phenomena) on the other end, and other representations placed in between, based 
on their abstract/concreteness. All these representations are separated by ontological gaps, and the 
distance between any two representations on the continuum is proportional to the ontological gap 
between them, which is in turn proportional to the difficulty to translate between them. In this view, 
students have conceptual difficulties because they lack an understanding of the translation process 
across items on the cascade.

Johri, Roth, and Olds (2013) refine this cascade model (Figure 4), in the context of engineering design, 
focusing on the relationship between the world and language (and/or thought), where design moves 
through a series of representational transformations, which bring the world and the word closer. The 

Box 4. Quick review of research on MERs and representational competence in mathematics.
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model situates words and abstract symbols on one extreme, while world (as experienced by a cognitive 
agent) on the other extreme of a continuum of representations. Starting with the notion of ontological 
gaps (Roth & Tobin, 1997) between the worldly phenomena and their representations, Johri et al. (2013) 
argue that the representational translations are crucial in bringing the world and the word closer. In 
the natural sciences, this movement of the cognitive agent through a continuum of representations 
happens from the world to the word; whereas in engineering practice, it is the other way round (Johri 
et al., 2013; McCracken & Newstetter, 2001). In the context of education, Johri et al. state that difficulty 
in transformations between the kinds of representations results in difficulties in learning.

Figure 4. The representational chain model.

Box 5. Quick review of research on MERs and representational competence in engineering.
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2.1.2. Reasoning and MERs
The frameworks discussed under this section model students’ interpretation of MERs and their reasoning 
in relation to scientific concepts.

Different external representations present different aspects of the world, and thus, serve different func-
tions in cognition, communication and other activities. Ainsworth (1999, 2008) presents three different func-
tions of multiple representations – (a) they are complementary to each other (as different representations 
provide different perspectives about the same phenomenon and/or entity), (b) one external representation 
may constrain the process of interpreting another (as a result of familiarity with it) and (c) multiple rep-
resentations together help conceptual understanding (through representational integration). This proposal 
can be interpreted as suggesting possible ways in which a learner may use multiple representations to 
understand scientific concepts and reason about them. The model is employed by education researchers 
across many scientific disciplines (e.g. Won, Yoon, & Treagust, 2014), for designing interventions as well 
as understanding the cognitive underpinnings of processing and integrating multiple representations.

Students’ ability to interpret MERs in biochemistry is the focus of the model of Schönborn and 
Anderson (2009). It has three main intertwined components: concepts, reasoning and modes of 
representations (Figure 5). According to the authors, this description of different abilities provides a 
framework for classifying expert ways of reasoning (i.e. characterisation of RC) and analysing students’ 
reasoning difficulties. For instance, experts are good at integrating any components the model describes, 
because they have the necessary conceptual knowledge, reasoning abilities and understanding of MERs 
to convey their conceptual knowledge or reason about phenomena and/or entities. Learning can be 
understood as development of connections between these components of the model, and a learner 
may exhibit the use or combination of any two or all the three components of the model (reasoning 
based on concepts, representation-mediated reasoning, relationship between representations and 
concepts embedded in them). The authors emphasise reasoning using MERs (modes of representa-
tions) in learning, given the central role of representations in science cognition. The model suggests 
various abilities that characterise competence in science. However, from an assessment perspective, it 
generates a large number of possible abilities, to assess each of which is difficult and time-consuming.

An alternative view is presented by Pape and Tchoshanov (2001), who explicate the distinction 
between internal and external representations, and recommend that thinking and reasoning through 
representations, in the context of mathematics, is a result of the interaction of (a) internalisation of 
external representations and (b) externalisation of internal/mental images. In learning, the mental 
images of primary mathematical concepts (such as addition, say, using base-10 blocks) are gradually 
associated with external representations for these concepts (such as ‘+’). Also, a key aspect of RC in 
mathematics is the ability to associate abstract mathematical content with physical representations 

Figure 5. CRM model.
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and vice versa. However, evidences of trade-offs during learning, between grounded (non-abstract, 
real-world representations, such as a word problem) and abstract mathematical representations (such 
as algebraic expressions drawn from word problems), have been reported in the literature (Koedinger, 
Alibali, & Nathan, 2008). The trade-off exists because there are cognitive costs to using the two types 
of representations (grounded and abstract). For example, as mathematical content to be learned gets 
more complicated, thinking in abstract representations becomes necessary, even though this is difficult.

An important contribution of this research stream is the discussion of the relationship between 
external and/or grounded and internal and/or abstract representations, which is overlooked by previ-
ously discussed models, and education research in general, despite being critical in understanding rep-
resentational transformations, translations, coordination and reasoning (processes most of the models 
examine, but not from the perspective of the external–internal interaction).

The Representational Construction Affordances (RCA) model (Prain & Tytler, 2012), implicitly assumes 
this internal–external representation distinction, and focuses on the relationship between the act of 
generating representations and artefacts of different kinds in scientific reasoning and conceptual under-
standing. RCA model (Figure 6) – a Venn diagram of layered ovals of different sizes, with smaller oval(s) 
nested into larger oval(s) – concerns the relationships between broad and specific meaning-making 
practices in science around representational construction. The largest oval/layer signifies all the general 
material (instruments and artefacts) and symbolic tools (language, mathematics, gestures) offered 
by a culture. These general tools embed relatively specific representations (second oval) concerning 
epistemic and pedagogical practices around different knowledge systems (thought to be built on 
top of the general tools). Nested within the first two ovals (representational levels) are even more 
specific representational tools and practices concerning practice and pedagogy of science. The model 
is a pan-domain model, and presents how representations ‘productively constrain meaning-making 
practices in science and in science education, taking into account the interplay of diverse cultural and 
cognitive resources students use to achieve this meaning-making’. Representational fluency or flexibility 
can be understood as the ability to fluidly move between the general and specific representational 
systems as required to facilitate meaning-making. The authors stress on the meaning-making point, and 

Figure 6. RCA model.
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argue that a large fraction of the reasoning processes around MERs is informal in nature, i.e. not based 
on formal logic or other language-based systems (see also Tytler & Prain, 2010). Tytler, Prain, Hubber, 
and Haslam (2013) support this argument further by presenting case studies of students challenged 
to construct representations in order to solve problems on structure-function relationships in biology. 
They show that during the problem-solving process, students use visual and other non-formal modes 
of reasoning, along with linguistic forms of reasoning. Such informal modes of reasoning may be at 
the heart of MER integration, and thus, as Tytler et al. indicate, may have significant teaching–learning 
implications.

In the distributed cognition view (e.g. Kirsh, 2010), MERs are integral to the cognitive processes of 
an agent, and there is a continuous, dynamic interaction between the agent’s internal and external 
representations. The distributed cognition approach revolves around two core principles; first that 
‘people establish and coordinate different types of structure in their environment’ and ‘people offload 
their cognitive effort to the environment whenever practical’ (Aurigemma, Chandrasekharan, Nersessian, 
& Newstetter, 2013). Aurigemma et al. (2013) extend these two core principles to propose a model of 
the engineering design process, where the transformation process (between and among multiple rep-
resentations) rely not only on the dynamic interactions between the internal and external representa-
tions, but also on the representation building and other actions that the agent engages in. Building of 
external representations, in this view, not only offloads cognitive effort, but adds detail and constraints 
to the mental model and the reasoning of the agent, which would otherwise (as advocated by the 
classical information processing theories), run only in the head, and lack these details.

2.1.3. Mechanism of MER cognition
The models discussed in the above two sections focused more on the classification of external rep-
resentations, and little on the mechanism of how the different kinds of MERs interact with a learner’s 
mind. The frameworks reviewed below focus on the latter.

Wu, Krajcik, and Soloway (2001) propose a model of RC, examining the possible cognitive con-
nections a learner could make between different available information sources, particularly external 
representations in chemistry. Informed by the general dual coding theory in cognition by Paivio (1991; 
elaborations and other versions by Mayer, 2005; Schnotz, 2002; Sweller & Chandler, 1991), the model 
implicitly assumes internal/mental representations and the external representations as distinct entities, 
and suggests that a cognitive system can be roughly represented into a 2 × 2 matrix (Figure 7), made 
up of four different subsystems: a conceptual system which is represented either (a) externally or (b) 
internally; and similarly, a visual system represented either (c) externally or (d) internally. The authors 
empirically verify that three specific kinds of cognitive connections are possible for a learner between 
her conceptual system and representations. The external and internal conceptual systems are con-
nected (connection 1), as are the external and internal visual systems (connection 2). Moreover, the 
active learner also makes a connection between the internal conceptual and internal visual systems 
(connection 3). For instance, when a learner encounters an external conceptual stimulus, she actively 
interprets it (internally represents, connection (1)). Similarly, the external visual stimulus is also inter-
preted (internally represented, connection (2)). Often critical is the third connection, the connection 
between the internally represented conceptual and visual systems (Wu et al., 2001). Difficulties or 
errors in any of the three connections lead to difficulties in teaching–learning chemistry. This model 
is best understood as a model of the interaction between MERs and cognition than a model of levels.

Along similar lines, Schnotz (2002) describes a linear process of how MERs relate to cognition. 
According to his model, a learner initially perceives external representations (graphics or text) and 
creates a surface feature-based visual representation in the mind. This surface-feature-based mental 
representation of an external representation or model is then mapped on to common features from 
other mental representations of external representations/models, which consolidates into a mental 
model of the subject matter (Schnotz, 2002). Such a mental model is more abstract than the surface-fea-
ture-based visual representations and is incomplete, erroneous or absent in novices, as their internal 
representation remains at the visual level due to lack of prior knowledge.
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Based on an empirical study, Briggs and Bodner (2005) propose a model of problem solvers’ ability 
to visualise molecules in a mental rotation task performed on an organic molecule. The results are 
interpreted in the form of a framework, which suggests that different components of a mental model 
are at work while handling multiple representations in organic chemistry. Four of the mental model com-
ponents are: static representations viz. referents (physical objects), relations (spatial relation between 
referents; Gilbert, 2005), rules/syntax (order of referents guided by conceptual knowledge) and results 
(outcome/product of visualisation). Another component is dynamic, and is rather an operation (e.g. 
visualisation, rotation) performed on the static representations (Briggs & Bodner, 2005). Expert-novice 
differences can be explained on the basis of differences in static components, rules/syntax (concep-
tual understanding) and working memory. Unlike previous models, this model assumes the internal 
representations to be dynamic. However, the relationship between static and dynamic components is 
not clear. It is also not clear how the model would accommodate referents, relations and results that 
are dynamic in nature. The notion of conceptual knowledge is not clearly captured in the model, and 
the nature of conceptual knowledge could itself be dynamic than static.

2.2. Developmental models of RC

The focus of frameworks presented in this section is the process of RC development. These models may 
be informed by one or multiple theoretical assumptions discussed in the previous sections, and hence 
can be complementary to those models.

Dreyfus (1991) provides a linear stage model based on the number and complexity of representa-
tions simultaneously used by a learner. The model proposes that MERs mediate the process of learning, 
which passes through four sequential stages: (1) using single representations, (2) using more than one 
representation in parallel, (3) making links between the representations used in parallel; and (4) integrat-
ing representations as well as flexibly moving between them. The author argues that the processes of 
representation and abstraction are complementary processes moving in opposite directions. In other 
words, the act of representation is parallel to externalisation, while abstraction connotes internalisation.

A more sophisticated account of learning with multiple representations in mathematics is provided 
by Duval (2006). This model maintains that coordination between at least two representational forms, 
termed as registers, is necessary for comprehension of mathematical concepts. There are four such 
representational forms/registers: natural language, figures and diagrams, notation systems (symbols) 
and graphs. Learning with multiple representations involves students gaining more control over these 
registers. A learner initially stays within one register (e.g. carrying out calculations in only one notation 
system), then moves to conversions, where she changes the register (e.g. using notations/symbols like 
‘+’ to represent ‘addition’, a mathematical relationship originally described in language/words) and then 
finally achieves coordination among multiple registers.

Figure 7. Wu et al.’s (2001) mechanism model of learning through MERs.
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Goldin and Kaput (1996) also provide a three-stage process of development of RC in mathematics. 
The stages are: (a) inventive-semiotic stage, where a learner is introduced to new characters of a rep-
resentational system (for instance numbers/counting) that symbolise aspects of familiar systems such 
as a real-life situation; (b) the use of this system as a template to learn a more sophisticated system of 
rules for the new symbol-configurations (for instance, the concept of a number) and variations; and, (c) 
the new system, once learned and practised with, becomes independent and detached from the earlier 
system of representations (for instance, doing arithmetic/algebraic exercises). The third stage indicates 
abstraction, and is particularly critical in characterising RC in mathematics since mathematicians often 
operate in the world of abstract entities.

An influential model of the different abilities of experts and learners working with MERs is given by 
Kozma and co-workers, who coined the term ‘RC’, to describe

a set of skills and practices that allow a person to reflectively use a variety of representations or visualisations, singly 
and together, to think about, communicate, and act on chemical phenomena in terms of underlying, aperceptual 
physical entities and processes. (Kozma, 2003; Kozma, Chin, Russell, & Marx, 2000; Kozma & Russell, 1997, 2005; 
Madden, Jones, & Rahm,2011)

The authors characterise RC in terms of following specific skills in the context of chemistry: (a) using 
representations to describe chemical phenomena; (b) generating and/or selecting and explaining 
appropriate representations for a specific purpose; (c) identifying and analysing different features of 
representations; (d) comparing and contrasting different representations and their information content; 
(e) making connections across different representations, mapping features of one type of representa-
tion onto those of another, and explaining the relationships between them; (f ) understanding that the 
representations correspond to phenomena but are distinct from them; and (g) using representations 
in social discourse to support claims, draw inferences, and make predictions (Kozma & Russell, 2005).

Several researchers have argued that students’ RC is often underestimated, despite reports suggest-
ing difficulties in generation, selection, coordination and general handling of MERs among students 
(e.g. Izsák, 2011; Kieran, 1981; Leinhardt, Zaslavsky, & Stein, 1990). Students exhibit better competence 
than previously thought (diSessa, 2004; diSessa, Hammer, Sherin, & Kolpakowski, 1991; diSessa & Sherin, 
2000). Preliminary research investigating the nature of untutored native competence among students 
in terms of content knowledge (whether inarticulate intuitions or articulable/potential principles), 
sources of such knowledge and the possibilities of refining this knowledge indicate that students’ 
capabilities with representations were often underestimated by prior studies (diSessa & Sherin, 2000). 
Students are capable of having deep and rich, although intuitive, ideas about dealing with and making 
sense of external representations in their own ways. This competence is referred to as ‘native compe-
tence, or meta-RC’ by diSessa and Sherin (2000), and constitutes the following abilities: (a) invent or 
design new representations, (b) critique and compare MERs, for their appropriateness and adequacy, 
(c) understand various functions of representations in context, and how representations serve such 
functions in that context, (d) explaining representations and (e) learning new representations quickly 
with minimal instructions (diSessa, 2004). The notion of meta-RC is different from RC in the following 
way: it is concerned with whatever students know about the act of representation and its products 
(meta-representation); it does not focus on representations used for instruction in a domain, or the 
standard school modes of reproduction and interpretation (diSessa & Sherin, 2000).

2.3. Summary

In this section, we reviewed important theoretical frameworks for RC, categorised under two major 
themes: models of RC concerning MERs and their cognition, and the developmental models of RC. 
Within the former category of models, we saw three different sets of models: one captures the relation-
ship between nature of a domain, MERs in that domain, and cognition (model of three thinking levels 
and its versions, cube model, Lesh translation model, model of ontological gaps and representational 
chain model); the second captures how students reason about MERs (Ainsworth’s model of function 
of representations, CRM model, internal-external/abstract-concrete MER trade-off model, RCA model 
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and distributed cognition framework); the third set of theoretical frameworks models the cognitive 
mechanisms involved in the processing of MERs (Dual coding theory and models informed by this 
view, and the model of four cognitive components). Among the RC developmental frameworks, we 
reviewed stage models proposed by Dreyfus (1991), Duval (2006), Goldin and Kaput (1996), Kozma 
and colleagues’ RC characterisation, and the model of native and meta-RC by diSessa and co-workers.

In the section below, we discuss empirical studies investigating different aspects of RC, as well as 
the studies examining the process of learning through MERs.

3. Empirical investigations of learning with MERs and RC

There is a vast literature reporting empirical investigations of RC, mostly examining the learning and 
use of scientific and mathematical MERs, the use of MERs in science practice, and the nature of skills 
involved in RC. These studies are widely dispersed, and often published in discipline-specific venues. 
Only a few studies explicitly subscribe to one of the specific models discussed in previous sections (e.g. 
Aurigemma et al., 2013; Hinton & Nakhleh, 1999; Madden et al., 2011; Moore et al., 2013, etc.). Most 
studies only broadly relate to the major theoretical frameworks of RC. As a consequence, there is no 
well-articulated theoretical framework that helps integrate the disparate studies.

In this section, we bring together these disparate studies along two major themes based on the 
RC abilities they focus on: (1) linking MERs and translating between them, and (2) expert or student 
generation of MERs and their MER preferences.

Some studies discussed under each theme explicitly appeal to the classical information processing 
paradigm in order to explain student learning difficulties and/or expert-novice differences in relation 
to MERs, while some other studies implicitly assume classical information processing perspectives, 
but do not endorse this view explicitly. These studies focus on one or more of the following processes, 
usually identified with the classical information processing paradigm: working/short-term memory, 
long-term memory, information storage (assumes a storage module), memory/information extraction 
(assumes searching), translation of information (assumes that information from one code is translated 
into other code(s)) and fully internal representations. A third set of studies are neutral on the nature 
of MERs and RC. Finally, a few studies subscribe to recent cognition theories such as distributed and/
or embodied cognition.

3.1. Linking MERs, translating and/or transforming between them

Students find it difficult to understand the interrelations between different symbolic representations, 
which capture different features or aspects of worldly phenomena, and a wide range of studies have 
examined this difficulty. For instance, information about a chemical reaction is embedded in the symbols 
and numbers in the chemical equation representing that reaction. Being able to relate symbols and 
numbers with the dynamic reaction, by cross-linking the ‘three thinking levels’ (Hinton & Nakhleh, 1999), 
is one way to make sense of a chemical equation. Studies show that students lack a clear understanding 
of basic concepts such as oxidation numbers, ionic charge, atoms and atomic structure, formal rules for 
writing molecular formulas, as well as meaning of subscript letters, numbers and coefficients (Garforth 
et al., 1976; Savoy, 1988). Because of this, students face difficulties while dealing with chemical equa-
tions. In addition, students fail to associate the ‘symbols and numerical answers with real objects and 
phenomena’ when asked to explain different chemical equations (Herron & Greenbowe, 1986) using 
particulate drawing (Sanger, 2005). Studies that examine how students balance chemical equations 
(asking them to explain their balancing protocol) reveal that many students balance chemical equa-
tions algorithmically, without actually understanding the meaning of symbols and numbers (Hinton 
& Nakhleh, 1999; Nurrenbern & Pickering, 1987; Yarroch, 1985). The algorithmic approach to equations 
could indicate failure in understanding that the coefficient and subscript numerals are not just some 
numbers, but represent and quantify the particulate nature of matter. This is a failure in establishing 
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the correspondence between macro-level visible reality and the periodic table, symbols and numbers, 
chemical formulas and reaction mechanisms.

In mathematics, many studies examining the understanding of length and area measurement show 
that children often struggle to see the relationship between numbers, units and space; particularly 
how a numerical value is related to a spatial area (Battista, 2003; Battista & Clements, 1996; Kamii & 
Kysh, 2006; Pande & Ramadas, 2013), even though all these different representational systems model 
the same concept. Santos (1996) examination of students’ responses to contextualised hypothetical 
questions (such as ‘how many tennis balls would it take to fill a classroom?’) reveal that students’ use 
of numbers, and algebraic as well as arithmetic operations, is largely algorithmic.

A related set of studies analyses the connections students and teachers make between MERs (par-
ticularly graphs, tables and pictorial representations) of mathematical functions (Çelik & Sağlam Arslan, 
2012; Hitt, 1998; Knuth, 2000) by documenting which MERs were preferred by the participants over 
others. Knuth (2000) presented high school students with several function problems using algebraic and 
graphical representations, and asked them to solve each problem using either a graph or an equation, 
and then produce an alternative solution method using the other representation. The author found 
that graphical representation provided during the study was often considered irrelevant by the stu-
dents. Most students prefer algebraic/symbolic representations (Acevedo Nistal, Van Dooren, Clarebout, 
Elen, & Verschaffel, 2010; Acevedo Nistal, Van Dooren, & Verschaffel, 2012; also shown in probability 
tasks by Anastasiadou & Chadjipantelis, 2008). Students did not agree on which representation would 
be appropriate for a problem, and found it difficult to explicitly reason using chosen representations 
(Acevedo Nistal et al., 2012). Learners also have a general difficulty establishing links between prob-
lem situations (word problem statements), graphs and functions and other symbolic representations 
(Billings & Klanderman, 2000).

Elia, Panaoura, Eracleous, and Gagatsis (2007) used different tasks that required students to explic-
itly talk about their definitions and understanding of the concept of functions, identify correct alge-
braic functions in relation to diagrams of situations and translate between multiple representations 
of algebraic functions. The authors report remarkable inconsistencies among students in relation to: 
(1) approaches to different representations of functions across tasks, and (2) definitions of functions 
and their ability to recognise the concept of function in different forms or problem-solving tasks. They 
conclude that students tend to highly compartmentalise the concepts taught to them, based on dif-
ferences in the situations and representations encountered around those concepts. Students were also 
found to perform badly in relating situation diagrams and algebraic functions.

In chemistry, Kozma and Russell (1997) report an expert versus novice study, where they posed 
two tasks, a categorisation task and a transformation task, to experts (practising chemists) and novices 
(undergraduate students), individually. The authors wanted to know if the participants ‘saw connections 
between different chemical visualisations corresponding to the same phenomena or if they understood 
something different for each type of visualisation’. The first task required participants to group a set of 
14 cards, with dynamic and still images (corresponding to several chemical reactions), into meaningful 
groups. The representations (dynamic and static images) included videos of the experiments, animations 
of the molecular events, graphs, and chemical equations. Observations revealed that novices formed 
their meaningful groups from a small number of cards, often from the same media type (e.g. all graphs 
as a category, all equations as another category and so on), while experts made larger groups, com-
posed of multiple media forms. Experts gave largely conceptual reasons for forming particular groups, 
while novices’ reasons were often based on surface features. In the second, i.e. transformation task, 
participants were shown chemical equations, videos of experiments, dynamic graphs and animations 
of the molecular events of an experiment, one at a time. Participants were asked to transform the given 
representation to another form (such as drawing a graph corresponding to the given equation, selecting 
an animation that best corresponds to an equation, etc.). The authors found that ‘experts were much 
better than novices at providing verbal descriptions, due to their deeper understanding of chemical 
principles and concepts’. Also, experts were better than novices when transformations required a con-
structed response, such as drawing a graph or writing a chemical equation.
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Similar findings are reported by Madden et al. (2011) in their examination of RC differences between 
first semester and advanced level chemistry students’ in the context of ideal gas problems. The prob-
lems, investigating RC level among students, required the students to provide verbal descriptions of 
behaviour of an ideal gas (from particulate level sketches, diagram and graphs), calculate (i.e. provide 
a mathematical representation of ) pressure exerted by a gas and transform between these generated 
calculations (mathematical) and verbal descriptions, graphs and particulate level sketches. The authors 
used a modified version of Kozma and Russell’s (2005) RC framework to analyse student performance, 
and found that the students with less prior experience largely exhibited algorithmic use of the ideal gas 
law. Their use of equation, variables and values seemed to be disconnected from other representations, 
unlike students with more exposure.

Ben-Zvi, Eylon, and Silberstein (1988, 1987) found that students’ thinking relies primarily on per-
ceptual/sensory information, and since the pedagogical practices while teaching symbols, equations 
and operations do not seek to provide perceptual-sensory assistance, these aspects of science and 
mathematics are not understood by students in terms of their macro- and micro-level instantiations. 
As a result, learners tend to concentrate more on the familiar representation(s) or algorithms in order 
to manage the cognitive load, and end up ignoring the relationships between concrete and abstract 
MERs (Johnstone, 1991; van Someren, Reimann, Boshuizen, & de Jong, 1998).

Ozogul, Johnson, Moreno, and Reisslein (2012) also focus on the load on working memory students 
experience while learning MERs. They examined the effects of various modes of integrating equa-
tions in circuit diagrams in the engineering domain, and found that undergrad students often failed 
in integrating the two kinds of representations, because of the increase in cognitive load during the 
instructions. The ability to establish relevance, given the information depicted through MERs, is related 
to the amount of information working memory can handle (Chi, Feltovich, & Glaser, 1981). Higher 
prior knowledge facilitates identification of the relevant/necessary features in representations, and in 
extraction as well as interlinking of information through these features (Chi et al., 1981; Cook, Wiebe, 
& Carter, 2008; Kozma & Russell, 1997; Larkin & Simon, 1987). This lowers cognitive load, as participants 
with higher prior knowledge can rely on their existing knowledge stored in long-term memory for 
information chunking.

The prior knowledge effect was demonstrated using eye tracking by Cook et al. (2008), using a study 
examining the way students’ prior knowledge interacted with the way they interpreted macro and 
molecular graphics of diffusion phenomena. The authors captured the number of transitions students 
made between molecular-to-molecular, macro-to-molecular, molecular-to-macro and macro-to-macro 
representations, using eye-tracking. On average, students with low prior knowledge made more tran-
sitions than students with high prior knowledge. Students with low prior knowledge focused more on 
surface features of representations (Kozma & Russell, 1997). Low-prior-knowledge students needed to 
make frequent transitions in order to map features from one representation to the other, when trying 
to link them together. Similar patterns of transitions between MERs are reported by Kohl and Finkelstein 
(2008) in a study to understand patterns of MER use during problem-solving in electrostatics. Three 
groups of participants – experts, weak novices and strong novices – individually solved two different 
sets of problems. In one set, MERs were given to the participants. In the second set, word problems 
on electrostatics were given, and participants had to generate representations based on the textual 
description. Results showed multiple levels of competences across all the three groups, but experts 
(as originally designated) generally tended to successfully solve problems, making less number of 
to-and-fro transitions (measured as density of transitions between representations per minute) than 
the novices. Surprisingly, strong novices exhibited intermediate performance. Since participants with 
low prior knowledge are less aware of the ‘subtleties of representations and the conventions for inter-
preting them’, they may have needed more transitions to interpret the represented information (Cook 
et al., 2008) and relate it to information in other representations. Interestingly, researchers have found 
that although the domain knowledge and RC are interconnected, RC can be predicted from, but cannot 
guarantee, domain knowledge (Nitz, Nerdel, & Prechtl, 2012; Nitz & Tippett, 2012).
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A parallel set of studies argues that visuo-spatial thinking ability is fundamental to RC, although 
working memory capacity is the ultimate limiting factor. Bodner and Domin (2000) examined transform-
ing of 2D representations into 3D and the reverse, and document the difficulties students encounter 
with such transformations, especially in the context of organic chemistry. There is a deep relationship 
between students’ mental rotation ability and their ability to transform 2D representations into mental 
3D representations (Shubbar, 1990; Wu & Shah, 2004). Shubbar (1990) attributes students’ difficulty in 
2D–3D transformation to problems in either comprehending depth cues in 2D diagrams, or tracking 
the depth cues in molecular diagrams that depict chemical change. These simultaneous activities put 
tremendous cognitive load on student, and are critical to learning difficulties (Wu & Shah, 2004). In 
chemistry, a learner needs to perform multiple operations at multiple spatial scales: atoms and mole-
cules, their collective behaviour and properties and reaction mechanisms need to be imagined simul-
taneously in a consistent manner. Similarly, understanding biological phenomena such as evolution, 
for instance, requires traversing different levels of spatial scales, right from DNA mutation to changes 
in an organism across generations.

The empirical work discussed so far largely advocates vocabulary and notions usually identified 
with the classical information processing theories in cognition. Building from such studies, there have 
been a number of attempts since the early 1990s to develop chemical visualisation/virtual manipula-
tion software to help students develop RC. These interventions are based on the classical information 
processing approach to cognition, particularly Baddeley’s working memory model (e.g. SMV Chem, 
visChem, 4M:Chem, EduChemHS, eChem, etc.), and seek mostly to display multiple representations 
simultaneously on screen, to lower the load on students’ memory.

There is also a significant number of studies in RC either disregarding the concepts such as working 
memory and/or cognitive load, or employing alternative perspectives on cognition. For instance, Kozma 
et al. (2000) anchor their work in the situated cognition perspective – which proposes that knowledge of 
a practitioner (say a chemist) is inseparable from the natural context of that practitioner (chemistry lab-
oratory), and is therefore best investigated within the context of that practice. The researchers observed 
chemists and academicians practising in laboratories, and reported that ‘materialising’ representations 
that could be perceived and manipulated, (i.e. creating and/or using MERs) helped participants operate 
on the otherwise imperceptible entities and processes. MERs also helped chemists discuss problems; 
they used visualisations and structural diagrams to describe the composition and geometry of the 
compounds considered for synthesis, and used diagrams and equations to think through the possible 
reaction mechanisms. Kozma (2003) extended this earlier study with novices (undergraduate students), 
and reported lack of such RC in this group.

Shifting the focus from students, Stewart (1982, 1983) argues that the origin of student difficulty 
in interlinking multiple representations lies in the teaching sequence of concepts. Taking examples 
from biology, the authors argue that teaching Mendelian genetics before cell division could be one 
reason why students fail to understand the connection between meiosis (micro-level explanation) and 
Mendelian genetics (macro level). Longden (1982), on the other hand, situates the root of the problem 
in the static nature of diagrams used in science classrooms.

Schnepp and Nemirovsky (2001) emphasise the role of dynamics in understanding MERs in the 
context of physics, and argue that the recognition of motion in distance–time, velocity–time and 
other equations and graphs of motion requires merging perception with imagination. They found, 
through observing a calculus course for 12th graders, that students have difficulties in imagining motion 
depicted in mathematical representations of physical phenomena. Sometimes these depictions refer to 
physically impossible events. For instance, a distance–time graph depicting a plane after a slope refers 
to an object instantaneously stopping its motion. Imagination is key to recognising the relevance of 
such representations to physical phenomena (Schnepp & Nemirovsky, 2001), and thus understanding 
the conceptual content of MERs. Thompson and Sfard (1994) argue that mere perception of a func-
tion, for instance, in its multiple representations such as a table and a graph, may not be sufficient for 
a student to realise the equivalence between those representations (also suggested by Kaput, 1995). 
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It is extremely difficult to gauge if a student understands the continuity of that function, distributed 
across those multiple representations.

Similarly, White and Pea (2011), during observation of students collaboratively solving a set of 
decryption problems using a dynamically linked multiple representation environment (Code Breaker), 
discovered that although students may exhibit competence relative to a specific task during prob-
lem-solving episodes, understanding that the concepts and mathematical operations are distributed 
across multiple representations may take numerous episodes of using multiple representations (Giere 
& Moffatt, 2003) as well as manoeuvring different representational tools (Hutchins, 1995a; White & Pea, 
2011) collaboratively in different problem situations.

Close to the view, we advocate later in Section 5, a group of researchers argue that understanding 
scientific phenomena not only requires seeing the different connections between MERs, but also using 
those MERs and the connections between them, to build dynamic internal (mental) models that simu-
late the behaviour of many individual components of real-world events (Davidowitz, Chittleborough, 
& Murray, 2010; Grove, Cooper, & Cox, 2012; Levy & Wilensky, 2009) and effects of various parameters 
on such events. Difficulty in building consistent internal models of phenomena using MERs is a major 
problem identified among students. For instance, students are reported to have difficulties in mentally 
animating as well as simulating physical systems (such as flush-tank, gears; Hegarty, 2004; Schwartz & 
Black, 1996a, 1996b). This leads to problems in understanding and predicting system behaviour and/
or answering problems.

Pande and Chandrasekharan (under review) found that expertise in a domain is accompanied by 
fine-tuning of the sensorimotor system, as a function of the amount of training in that domain. During 
an MER card sorting experiment involving the use of eye tracking, the authors discovered that experts 
navigated MERs in a very balanced manner in terms of eye movements. Their gaze transitions between 
different parts of a representation were meaning-driven and globalised, i.e. evenly distributed across the 
different parts of a representation (e.g. in case of an equation, the experts would specifically attempt to 
relate its different parts – reactants and products). Novices, on the other hand, exhibited more localised 
but often haphazard gaze and eye movement patterns that lacked coordination between the differ-
ent regions of a representation. However, novices that performed like experts in the card-sorting task 
had eye movements similar to experts. The authors conclude that sensorimotor structures are tuned 
through interactions with MERs, and this tuning may be helping experts to pick up information from 
MERs more effectively.

Unlike the previously discussed computer interventions based on memory-based approaches that 
focus on simultaneous display, recent work informed by emerging cognition perspectives focuses on 
interlinking representations through dynamic manipulable simulations, animations and physical models. 
For instance, the manipulability feature in the Connected Chemistry Curriculum, based on the Netlogo 
2D interface, may help students transform better between static and dynamic representations (such as 
equations, graphs and molecular simulations). Control-treatment group experiments, where students 
were asked to draw submicroscopic pictures for certain chemical systems/reactions, showed that the 
connected chemistry curriculum improves handling and understanding of multiple representations 
in chemistry, when compared to conventional text or lecture-based curricula (Stieff & McCombs, 2006; 
Stieff & Wilensky, 2003).

Kothiyal et al. (2014) report in detail the development and testing of a fully manipulable simple 
pendulum simulation designed to help high school students integrate MERs related to the concept 
of oscillation. The design principles behind this simulation are inspired by distributed and embodied 
cognition perspectives (e.g. external representations allow processing not possible/difficult to do in 
the mind, Kirsh, 2013; action patterns can activate concepts, hence actions and manipulations of the 
representations should be related to existing concepts, O’Malley & Soyer, 2012). Unlike the Netlogo and 
PhET simulations, this simulation focuses on the enactivity/manipulability of abstract MERs, particularly 
MERs such as equations/graphs, in order to give the learner maximum control over the behaviour of 
the system through multiple modes. The authors claim that the enactivity of equations and abstract 



STUDIES IN SCIENCE EDUCATION   23

MERs is critical for understanding (implicitly as well as explicitly) the dynamic relationship between 
these MERs, and thus imagine the represented entity/phenomenon.

Such manipulable interfaces have often been coupled with other scaffolds (such as exercises, quiz-
zes, activities and teacher guides; Kukkonen, Kärkkäinen, Dillon, & Keinonen, 2013; Varma & Linn, 2011) 
and these have been effective in improving students’ representations and understanding. In organic 
chemistry, the activity of matching physical models to diagrams has been shown to provide (implicit) 
feedback to participants, leading to their improved performance during representational tasks (Padalkar 
& Hegarty, 2015). Computer interfaces have been explored from an assessment viewpoint in order to 
better characterise RC and multiple representational transformations among learners. Stieff, Hegraty, 
and Deslongchamps (2011) examined students’ use of a multi-representational molecular mechanics 
animation using eye-tracking, and observed that students mainly used graphical and model representa-
tions in animations, and often ignored the equation. Based on an eye-tracking investigation of partic-
ipants’ MER viewing as well categorisation processes, Pande and Chandrasekharan (2014), and Pande, 
Shah, and Chandrasekharan (2015) concluded that the richness of gaze transitions, as well as the nature 
of those transitions, between different parts of a representation (and/or different representations) could 
be considered a good marker of MER integration.

3.2. Generating MERs and representational preferences

Representations generated by students, and their choices of representations (e.g. which representation 
would help better in a given problem situation), are considered good indicators of misconceptions 
(as these reflect internal representations, Chi et al., 1981). They also suggest how different representa-
tions aid student thinking (as they support reasoning during the problem-solving process, Izsák, 2011). 
Literature in this area documents different representational preferences among students, and suggests 
that students find it extremely difficult to generate MERs and use the generated MERs to reason about 
phenomena in systematic ways (Diezmann & English, 2001; Kamii, Kirkland, & Lewis, 2001; for detailed 
review, see Diezmann & English, 2001).

Many of the classic studies in science, mathematics and engineering education focus on the nature 
of representations participants generate during problem-solving. These generated MERs are consid-
ered markers of participants’ problem representations (or internal representations/mental constructs of 
problem situations). Extensive work, particularly in the 1980s, investigated the way experts and novices 
approach physics problems, and the studies found certain key qualitative differences between the two 
groups, particularly in their problem representations. Chi et al.’s (1981) influential study, for instance, 
found that experts and novices categorise the given physics problems into different groups. The cat-
egories and explanations generated by experts had few features in common with those provided by 
novices. Experts sorted problems on the basis of principles, such as Law of Conservation of Energy, which 
could be used to solve the problems. Novices, on the other hand, exhibited limited capabilities in going 
beyond surface features of the problem statements/diagrams (such as literal meanings of words) while 
categorising problems. For instance, they put ‘merry go round’ and ‘rotating disc’ problems in the same 
category, as both involved rotating things. To explain these differences, Chi et al. (1981) postulated that 
differences in prior knowledge of the experts and novices make their problem schemata different from 
each other. The problem features engaged more tacit knowledge in the case of experts (Chi et al., 1981).

Interestingly, the authors found that both experts and novices used the same set of features in 
problem statement (and/or diagram), but the differences lay in the cues and interactions those features 
had with their prior knowledge and subsequent problem schemata. Participants’ prior knowledge and 
their ability to identify patterns of meaningful information (in and using MERs) were closely related. 
Experts (generally assumed to possess denser domain knowledge) are more likely to extract task-rele-
vant knowledge from a given representation or generate one to aid problem-solving (Chi et al., 1981; 
Larkin, McDermott, Simon, & Simon, 1980).

In Hmelo-Silver and Pfeffer’s (2004) investigation of pictorial representations (and verbal responses) 
of models of aquatic systems generated by experts and novices, the experts were found to integrate 
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structural–functional–behavioural information by dynamically imagining the mechanistic relationships 
between them; novices relied on the static structural features of the system components. Several other 
studies examining structure–function relationships report similar findings (e.g. Jacobson, 2001; Mathai 
& Ramadas, 2007; Subramaniam & Padalkar, 2009).

A related strand of research looks at how experts and novices differ in the way they use analogies to 
understand and explain biological phenomena (Dreyfus & Jungwirth, 1990). Student participants were 
asked to explain the meaning of various statements, such as – ‘the nucleus controls the functioning of 
the cell’. Most participants used fallacious analogies, such as – ‘just as brain controls the body’, in their 
responses. Experts often used analogies from systems they understood better, but they also searched 
for potential mismatches in the analogies. The novices were satisfied with the criterion of familiarity with 
the system while choosing an analogy, and never checked the analogies for mismatches. The authors 
suggest that mismatches in analogies may result in inconsistencies among internal representations, 
difficulties in understanding MERs, and ultimately difficulties in understanding biological phenomena. 
Analogies are thus powerful yet risky tools in interlinking information at multiple levels of organisation 
(Dreyfus & Jungwirth, 1990).

Santos (1996) examined students’ responses to spatial problems that required generation and use of 
multiple representational approaches. When students were asked to estimate the number of tennis balls 
needed to fill a classroom, they often attempted to translate the word problem into calculations without 
completely understanding the problem. They tended to use arithmetic and/or algebraic approaches 
to solve such problems, and had difficulties in moving from the arithmetic representation to visual 
estimations. Billings and Klanderman (2000), in the context of problems on motion and related topics 
in physics, found that students (pre-service teachers), when given graphical representations showing 
relation between speed and other variables (time–distance graphs), excelled at generating symbolic 
representations and operating on them (e.g. calculating average speed). However, the same students 
struggled in generating reasonable graphical representations and interpreting them while designing 
question sets for school exams. Further analysis of the assignments and question sets submitted by the 
students revealed that the students found it difficult to distinguish average speed from instantaneous 
speed, and even distance and speed. The slope of the line was often an area of misinterpretation and 
confusion.

On the other hand, students are reported to exhibit sophisticated reasoning around their choice of 
representations. For instance, 14-year olds, when posed with three kinds of tasks based on the design 
and working of a physical device called ‘winch’ in a study, generated many different equations, devel-
oped criteria to evaluate these equations, and finally selected some equations based on these criteria 
(Izsák, 2011). Interestingly, the participants developed as well as articulated their own criteria, such as 
‘single equation is better over multiple ones’ and that ‘the expression must generate positive values for 
distance’, during the selection and evaluation of generated representations. Although students lacked 
coordination between their criteria while evaluating MERs generated by them, the fairly reasonable 
articulation of criteria hint at some competence among students in evaluating and integrating MERs.

Such seemingly pragmatic representational preference tendencies (reasoning) among students 
are highly context-dependent, and there may be significant individual variations (Çikla & Çakiroglu, 
2006). For instance, equations are preferred during mathematical situations, whereas graphs are used 
when encountered with contextualised word/mathematics problems (Keller & Hirsch, 1998; Scanlon, 
1998). Students feel comfortable in using only symbols in fraction problems, whereas they encounter 
difficulties in relating concrete models/visuals of fractions with number line, verbal and symbolic rep-
resentations (Biber, 2014; Brenner, Herman, Ho, & Zimmer, 1999).

Novices have relatively unstable internal representations of problem situations than experts (Anzai, 
1991; Anzai & Yokoyama, 1984); this possibly arises from the limited capacity of their working memory. 
In a problem-solving experiment, expert and novice participants were asked to predict the behaviour 
of a constrained system (Figure 8), a yo-yo made by connecting the centres of two circular discs with an 
axle. The system was kept on a table, in such a way that the yo-yo discs could roll, but not slide (Anzai 
& Yokoyama, 1984; re-described in Anzai, 1991). Participants were asked whether the yo-yo would roll 
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to the left or to the right (left being the correct answer). Experts applied the lever-fulcrum principle to 
answer this problem correctly, while novices related the problem to real-world situations, trying to erro-
neously animate the yo-yo and thus performing poorly. However, changing the problem representation 
to abstract diagrams helped some novices to answer the yo-yo problem correctly (Anzai, 1991), possibly 
because of the reduction in cognitive load provided by the more directed animation of the movement 
of yo-yo. This result supports the suggestion from Anzai (1991) that experts and novices tend to use 
qualitatively different internal spatial representations to solve problems. Experts could be performing 
better in this generation task because producing and/or using diagrams allow computationally more 
efficient search for stored tacit information, as well as inference based on this information, compared 
to symbols and sentences (Kozma, 2003; Larkin & Simon, 1987).

A related strand of research examines ways to improve generation and integration of MERs among 
students, using different approaches. Cardella, Atman, and Adams (2006) investigated the role of sketch-
ing and MERs through a verbal protocol case study analysis of engineering students’ representations 
and representational activities during a design problem-solving process. Participants had a general 
tendency to use the given MERs, rather than generate new ones. However, those who could generate 
relevant MERs, such as problem statements, sketches and calculations, exhibited ‘information gathering’ 
during the process, to progress through the task. Based on this result, the authors suggest that genera-
tion of MERs compensates for the limitations of imagery. Successful problem solvers tend to construct 
more accurate, complete and abstract representations (numerical/symbolic/mathematical forms) of the 
problems, than the unsuccessful ones. Representations generated by successful problem solvers also 
evolved over time in terms of their abstractness (Domin & Bodner, 2012; Sevian, Bernholt, Szteinberg, 
Auguste, & Pérez, 2015), suggesting addition of information from participants’ prior knowledge.

Reisslein, Moreno, and Ozogul (2010) distinguish between abstract and contextualised engineer-
ing MERs, and emphasise the use of instructions that involve both these kinds. The instructions allow 
students to get more opportunities to interconnect abstract MERs, such as equations, with real-life 
situations. The study assessed learning outcomes and programme rating, using a survey based on a 
post-test. Three groups of participants received three different types of MER-mediated instructions: 
abstract (e.g. equations), contextualised (e.g. only circuit diagrams) and combined (both equations 
and circuit diagrams). Participants who received the combined contextualised-abstract instruction 
scored higher on the post-test, produced better problem representations, and rated the programme’s 
diagrams and helpfulness higher than their counterparts.

Based on the Lesh translation model (discussed in 2.1), model eliciting activities – particularly spe-
cific and goal-directed activities that involve building a working model of phenomena using MERs 
– have been reported to be effective interventions in engineering education (e.g. Diefes-Dux, Moore, 
Zawojewski, Imbrie, & Follman, 2004; Moore et al., 2013). Moore et al. (2013) investigated how engi-
neering students used representations and representational fluency in modelling heat exchange, and 
what role representations and representational fluency played in conceptual development during this 
activity. The students were expected to develop a model to ‘predict the interface temperature and 
the sensation felt by human skin when touching a utensil made of a specified material at a given 

Figure 8. Yo-yo on a table problem (adapted from Anzai & Yokoyama, 1984). The problem diagram is on the left, and on the right 
is its abstract diagram.
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temperature’. Student-generated representations were grouped under the five categories provided by 
the Lesh translation model, viz., concrete, pictorial, symbolic, language and realistic. Model development 
was found to be a function of representational fluency, involving not only generation and use of MERs, 
but also translation across the five categories of representations, and among multiple representations 
belonging to the same category. Going through the process of model development also often improved 
representational fluency among students (Moore et al., 2013).

Kindfield (1994) demonstrated, through an empirical study, the role of diagram generation in improv-
ing working memory. Generating diagrams helped connect external representations/models, internal 
representations and conceptual knowledge. The study analysed students’ ability to generate diagrams 
during meiosis (cell division) problem-solving, and the quality of the generated diagrams among partic-
ipants with varying degree of formal training in genetics (meiosis – cell division). Two criteria were used 
to distinguish the participants: (a) number of different representations of chromosomes used to reason 
about meiosis, and (b) nature and timing of inclusion of different features of representations. These 
two criteria determine a ‘knowledge-dependent representational variability’ (Kindfield, 1994). Similar 
to RC, this concept captures the quantity and quality of variations in the use and generation of MERs. 
Expert problem solvers exhibited knowledge-dependent representational variability, fine-tuned their 
diagrams according to the nature of the task, and used them systematically during reasoning. A cyclical 
approach was observed in experts’ problem-solving process. They first drew diagrams that offloaded 
their mental model, and then paused over the drawn figure, where they offloaded the computation of 
chromosomal configurations (essential for correct reasoning), and then draw again to externalise and 
check solutions, while also keeping track of the previous steps. Expert problem solvers thus exhibit 
better working memory skills mediated by diagrams (as the cyclical approach indicates) than novices, 
and these memory skills and conceptual knowledge co-evolve (Kindfield, 1994).

Anzai (1991) suggests repeated generation of MERs as an intervention to improve RC. In a repeated 
physics problem-solving experiment, where a student solved the same set of problems many times, and 
drew diagrams for each problem every time she solved that problem, new inference strategies were 
learned over time during the many iterations. The structure and quality of diagrams, and the relevance 
of the different components and elements in relation to the solution, increased dramatically over time, 
indicating that the students learned to make better transformations of the problem statements into 
sketches, diagrams and finally abstract free-body diagrams (Anzai, 1991). Izsák (2011) calls this process 
of repeated representation generation and problem-solving adaptive interpretation, which involves 
cycles of MER generation and self evaluation. MERs are generated first to interpret problems, then to 
solve problems; then MERs are generated again, and they are evaluated; this process continues until 
one gets a grip on the problem.

The repeated generation of sketches and MERs is believed to augment thinking and generation of 
ideas relevant to the process (Purcell & Gero, 1998). During engineering design, MERs such as graphics 
and sketches actively bring together an agent’s explicit conceptual knowledge, cognitive experiences 
(Herbert, 1988) as well as implicit understanding of system behaviour. MERs can be easily and flexi-
bly manipulated according to the needs of the design problem. Students who do sketching during 
problem-solving are more likely to formulate the problem precisely, meet relatively more problem 
constraints, and also produce quality design solutions, indicating that sketching helps in the overall 
design process. Also, different representations, such as problem statements, diagrams, equations and 
verbal descriptions, all serve different purposes for students, depending on the progress towards the 
solution (Cardella et al., 2006). The finding about sketching, particularly how it helps in meeting problem 
constraints, hints that sketching facilitates the dynamics of the design process, and also understand-
ing the dynamics of the product, by providing an external memory while thinking and designing and 
ultimately lowering the cognitive load (Cardella et al., 2006).

Purcell and Gero’s (1998) coherent and detailed review of various empirical and theoretical accounts 
of sketches in engineering design argues that generation of representations during the design process 
facilitates reinterpretation of the design itself, and this eventually leads to the emergence of new ways 
of seeing into the design. Using a design process analysis of participants from mechanical, instructional 
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and architecture design, Goel (1995) showed that the structure of their sketches improved as the design 
process progresses. The designers gradually added precise details to an initially vague sketch. However, 
during the process, the designers often tried out different design ideas in the sketches (lateral trans-
formations), one of which is then narrowed down and fixed as a theme to which details are added 
(vertical transformation). These processes of lateral and vertical transformations can be seen as a result 
of reinterpretation (Purcell & Gero, 1998; also designated as ‘restructuring’ by Cardella et al., 2006). 
Sketching facilitates reinterpretation by creating a perceptual space, and subsequently a conceptual 
space (Herbert, 1988), of many relevant ideas. The best ones are then chosen for refining.

Reinterpretation through the generation of MERs is also reported by Aurigemma et al. (2013), who 
observed a bioengineering researcher designing a ‘Lab-on-a-chip’ (LoC) device in an integrated systems 
biology lab. The authors, motivated by the distributed and situated cognition frameworks, report that 
the design activities were driven by generation of MERs, going back and forth between the MERs and 
the prototypes, and modifying both MERs and the prototype iteratively as a result of constant reinter-
pretation, in order to arrive at a well-functioning version of the prototype. The participant iteratively 
went through various drawings of the device, inscribed (numerals and calculations) on the drawings, 
generated her own drawings, imagined the structure–function relationships of the various components 
of the device, and tried to map them onto the requirements (often numerical in nature). She also used 
modelling and simulation software such as COMSOL and MATLAB to explore different design possibil-
ities and constraints, and integrated the results with the prototype. The models output numerical data, 
which the student integrated with her drawings, her imagined functioning of the design and the actual 
test results presented by the physical prototype. Much of the cognitive activity of the student, thus, 
involved inferring dynamic information (in this case, the flow of liquid through the LoC device) from 
multiple representations (such as test results, drawings and numerical data) that were all static in nature.

3.4. Summary

This section reviewed empirical studies that investigated the ways in which students and experts estab-
lished links between MERs and translated between them, and the patterns of MER generation as well 
as preferences of students and experts. We discussed how studies (from science, mathematics and 
engineering) reviewed under each theme assumed the classical information processing model, by 
highlighting classical cognition ideas such as working memory load, information storage, information 
extraction and translation. We also discussed studies that take a relatively neutral stance on the nature 
of MERs and RC, as well as studies that subscribe to recent cognition theories such as distributed and/
or embodied cognition.

In the following section, we bring together the major themes revealed by the literature review 
presented in Sections 2 and 3.

4. Findings from the review

We present below four major findings from the above review of theoretical models and empirical 
studies of RC.

4.1. Ambiguous use of the term ‘representation’

The term ‘representation’ is used often in science education literature. The review revealed that it is 
used in an ambiguous way, referring to internal representations, external representations or both. 
Some notable exceptions include: (a) problem-solving studies in physics education research, where 
the term ‘problem representations’ refers to problem solver’s internal representations of the problem 
presented (e.g. Chi et al., 1981), and (b) several studies explicitly using the term MERs or external rep-
resentations (e.g. Mammino, 2008; Nakhleh & Postek, 2008), particularly studies employing distrib-
uted cognition frameworks (e.g. Aurigemma et al., 2013; Pande & Chandrasekharan, 2014). Since the 
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distinction between internal and external representations is not usually made, the problem of how the 
external and internal representations interact is rarely examined, particularly how they interact to raise 
or lower cognitive load, and support the imagination.

One way to think about representations in science, mathematics and engineering is to consider 
equations, graphs, etc. as external manifestations of experts’ internal models. These external representa-
tions augment cognition by offloading memory and/or processing as well as providing novel ways of 
combining elements (Aurigemma et al., 2013; Kirsh, 2010). Another approach would be to consider these 
external media as providing starting points for the learner to develop rich internal representations and 
their manipulations. A third approach would be to consider the external and internal representations 
as being coupled, and constantly interacting with each other (Chandrasekharan, 2014). Since the liter-
ature does not make the distinction between internal and external representations, these possibilities 
are not examined.

4.2. Different nature of MERs, and RC across disciplines

Many MERs share structural commonalities across disciplines because of the intertwined nature of 
these disciplines. For instance, MERs in mathematics (such as equations) appear in physics, chemistry, 
engineering and even biology in various forms. However, there exist subtle discipline-dependent dif-
ferences between these MERs and their affordances. Tables 1–6 below present a comparison of MERs in 
chemistry, biology, physics, mathematics and engineering across certain comparison criteria: examples 
of discipline-specific problems (Table 1), nature of MERs1 (Table 2), general learning difficulties and their 
nature (Table 3), widely used research methods (Table 4), important theoretical frameworks (Table 5) and 
major interventions (Table 6). Each table has disciplines in the first column, and criterion and specific 
items arranged in the second column. The disciplines (first column) have been arranged sequentially 
across rows starting with chemistry, followed by biology, physics, mathematics and engineering on the 
basis of (observed) increasing complexity in the nature of MERs and the RC problem.

Table 1 captures how the disciplines differ in the nature of problems they deal with in relation to 
MERs, although many problems in a discipline may be interdependent and/or tightly intertwined with 
those in the other. For instance, relating the concept of number, mathematical operations performed on 
numbers and fractions to their MERs (a problem in mathematics) is fundamentally linked to balancing 
chemical equations.

As shown in Table 2, MERs in chemistry are more defined and constrained in nature than those in 
other disciplines. For instance, there are certain conventions that guide the denoting of chemical ele-
ments, compounds and other substances, writing chemical equations, plotting graphs and drawing 
atomic/molecular diagrams in chemistry. The periodic table is a well defined, conventionalised and 
compact representation of chemical elements, and their properties, and is fundamental to chemis-
try. Given these conventions, there is very little scope to freely generate MERs and/or alter standard 
chemical representations while learning/doing chemistry. There are thus limitations to the use of MERs 
in chemistry. MERs in biology are more diverse than those in chemistry. Biology inherits certain rep-
resentational systems (essentially MERs) from chemistry, for example, chemical/biochemical equations, 
graphs. Phylogenetic trees in biology, like chemical equations, are MERs that are strictly convention-
alised. However, macro-level biological diagrams and descriptions are quite flexible for customised 
usage. MERs in mathematics are highly conventionalised and rule-based. But unlike chemistry, a single 
concept in mathematics (such as a ‘number’) can be represented in multiple ways. This makes usage 
of MERs in mathematics more flexible for the learner or doer. Physicists employ mathematical MERs 
and representational systems in solving physics problems. Use of diagrams in physics is convention-
alised, but the learner has enough space to generate diagrams in her own way; she can ‘scribble’ and 
represent situations under study in multiple ways and perspectives. Engineering borrows MERs from 
many of these disciplines, and from areas other than the core scientific domains, such as social sciences, 
humanities and economics. There is ample space for engineers to freely generate and play with MERs, 
prototypes and models. It is extremely difficult to use one kind of external representation to capture 
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every detail (feature) of the entity or phenomenon it represents. Naturally, this means MERs exist to 
meet this difficulty. In addition, each representation facilitates different perspectives towards entities 
and phenomena, as well as different affordances or action possibilities (both implicit and explicit). The 
exposure to multiple points of views and affordances enriches students’ experiences around what is 
being represented, ultimately improving conceptual understanding.

MERs are complementary to each other in terms of the information they convey (Ainsworth, 1999, 
2005; Kelly & Jones, 2008; Kozma & Russell, 1997; Mayer, 2005; Stieff & McCombs, 2006; Tsui & Treagust, 

Table 1. Trends in the literature on examples of problems pertaining to MERs and RC.

*Mistakes in mathematical representation are not considered, as most of the literature focuses on ‘physics reasoning’, and ‘half-
way’ representations that help in the process of formalisation. Such representations are needed before the final mathematical 
equations. 

Discipline Examples of problems
Chemistry 1. Balancing chemical equations, 2. Plotting concentration graphs, 3. Imagining reaction mechanisms, 4. 

Imagining chemical equilibrium, 5. Representing chemical equilibrium
Biology 1. Understanding biological phenomena at multiple levels of organisation (molecular, cellular, tissue, organ, 

organ system, organism, community, ecology and evolution), 2. Correspondence between levels (e.g. geno-
type/micro-level with phenotype/macro-level)

Physics 1. Producing problem-situation representations, 2. Producing mathematical models of physical phenomena/
entities*

Mathematics 1. Relating concepts of number, mathematical operations, and fractions to their MERs (digits, ‘+’, ‘–’ signs, 
decimals, etc.), 2. Implicit understanding of reasoning underlying symbol systems and symbolic operations 
needed for working with the mathematical representation

Engineering 1. Problems in designing, building devices, 2. Developing processes and systems, 3. Creating scale models, 
endurance-performance tests, simulations, 4. Relating engineering practice to MERs

Table 2. Trends in the examples of MERs and their nature.

Discipline MERs and their nature
Chemistry 1. Periodic table, 2. Chemical equations, 3. Concentration-energy graphs, 4. Molecular diagrams, 5. Observable 

properties, 6. Animations and simulations
(Well defined, convention/rule-based, constrained – i.e. not very flexible, little scope for generation)

Biology 1. Biochemical pathways, 2. Structures of biomolecules, 3. Phylogenetic trees, 4. Computational models of 
complex systems

(Well defined, rule-based, inclusive of but more diverse than chemistry MERs)
Physics 1. Problem statements, 2. Problem situation, 3. Sketches and diagrams, 4. Mathematical equations, 5. Simula-

tions
(Less defined, more customizable and less constrained, provides space for free MER generation) 

Mathematics 1. Digits, 2. Mathematical operations/procedures, 3. Symbols, 4. Equations, 5. Functions, 6. Charts, 7. Diagrams
(Well defined but more complicated MER system; allows representing a concept entirely using different 

representations)
Engineering 1. Text, 2. Materials, 3. Inscriptions, sketches and drawings, 4. Mathematical formulae, equations and functions, 

5. Prototypes and physical models
(highly open ended, more complicated than the previous cases, use MERs from multiple disciplines)

Table 3. Similarities and differences between the disciplines in the nature of general learning difficulties.

Discipline Learning difficulties and their nature
Chemistry 1. Visualisation, 2. Interconnection between MERs, 3. Representational transformation, 4. Transformation 

between static and dynamic MERs, 5. Conceptual integration across MERs, 6. Representation abstraction
Biology 1. Understanding levels of organisation, 2. Visualisation, 3. Transition between MERs, 4. Representational 

transformation, 5. Conceptual integration across MERs
Physics 1. visualisation, 2. Transformation between static and dynamic MERs, 3. Generation of MERs

4. Transformation between mathematical and real-world physical MERs, 5. Representation abstraction
Mathematics 1. Transformation between spatial (e.g. area/volume) and numerical (e.g. units/numbers) MERs, 2. Generating 

MERs, equations, 3. Thinking in equations/functions, 4. Comprehending problem representation-situation, 6. 
Representation abstraction

Engineering 1. Visualisation, 2. Transformation between static and dynamic MERs, 3. Generation of MERs, 4. Modelling
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2003; Wilensky, 1999). On the other hand, the fact that concepts related to scientific phenomena and 
objects can be represented in multiple ways implies that these ideas are distributed across multiple 
representations. This means that the aspects of RC, particularly interconnecting information distrib-
uted across MERs, explaining the relationships between them, and mapping features of one type of 
representation onto those of another, are different across disciplines.

4.3. Integration of MERs: a general cognitive difficulty

Despite the differences in the nature of MERs between the above disciplines, it is evident from Table 3 
that the RC problem is constituted by the following learning difficulties common to all the disciplines: 
visualisation of or through MERs, generation of MERs to represent entities and phenomena, visual-
ising and understanding entities and phenomena from MERs, interrelating information from MERs and 
transforming between MERs. Thus, difficulty in these operations underlies mastering MERs in a given 
discipline, and this difficulty leads to many different learning problems in that discipline. Supporting 
this view, in a specific knowledge domain, processing and understanding of MERs, and the ability to 
fluidly generate and use MERs in an integrated fashion (for conceptualisation, discovery and commu-
nication), are indicative of expertise in that domain. This suggests that RC (integration of MERs) is a 
general cognitive difficulty.

Table 4. Trends in the nature of widely employed research methods across the disciplines.

Discipline Research methods
Chemistry 1. Problem posing/solving, 2. Microgenetic, 3. Ethnography, 4. Expert-novice, 5. Prior knowledge and rep-

resentational competence correlation, 6. Interface testing, 7. Eye-tracking
Biology 1. Prior knowledge and representational competence correlation, 2. Expert-novice, 3. Eye-tracking, 4. Interface 

testing
Physics 1. Expert-novice, 2. MER generation and analysis, 3. Problem-solving case studies, 4. Microgenetic, 5. De-

sign-based research, 6. Interface testing, 7. Eye-tracking
Mathematics 1. Prior knowledge and representational competence correlation 2. Expert-novice, 3. Problem posing/solving, 

4. MER generation
Engineering 1. Ethnography, 2. Design and problem-solving case studies, 3. Design-based research, 4. Interface testing

Table 5. Important theoretical frameworks of RC and learning with MERs across the disciplines.

Discipline Important theoretical frameworks
Chemistry 1. Johnstone’ smodel of three thinking levels and working memory, 2. Wu et al.’s MER comprehension model, 

3. Abstractness of representations, 4. Distributed and situated cognition
Biology 1. Multiple levels of organisation, 2. Cube model, 3. CRM mode
Physics 1. Expert-novice qualitative differences (information processing model), 2. Meta-representational/native 

competence, 3. Abstractness of representations
Mathematics 1. Lesh Translation Model, 2. Duval’s levels of representational competence, 3. Abstractness of representations
Engineering 1. Representational chain model, 2. Lesh translation model, 3. Situated and distributed cognition approaches

Table 6. Notable trends in the major interventions across the disciplines to address the problem of RC.

Discipline Major interventions
Chemistry 1. Computer visualisation tools (visChem, 4M:Chem), 2. Computer simulations, 3. Problem-based Curricula, 4. 

Conceptual change model, 5. Laboratory integration, 6. Sequential MER introduction
Biology 1. Computer visualisation tools (evolution animations), 2. Computer simulations (Netlogo models), 3. Prob-

lem-based Curricula, 4. Laboratory integration
Physics 1. Computer simulations (PhET, Netlogo), 2. Problem-context-based learning, 3. Computer visualisation, 4. 

Virtual laboratory
Mathematics 1. Computer simulations (GeoGebra, Netlogo), 2. Problem-context-based learning, 3. Virtual/physical manip-

ulatives
Engineering 1. Computer visualisation and simulations, 2. Model eliciting activities, 3. Design and technology activities, 4. 

Problem-based teaching–learning, 4. STEM integration
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4.4. Focus on classical information processing models

Commonalities between the disciplines observed in Tables 3–6, as well as Sections 2 and 3 in the review 
show that most theoretical accounts of RC, as well as empirical studies and interventions across the 
domains, have been either explicitly or implicitly informed by the classical information processing mod-
els (Ainsworth, 1999, 2005; Johnstone, 1982; Wilensky, 1999). Chart 1 presents categories of theoretical 
models and empirical studies based on their subscription to major theories of cognition.

Three main assumptions can be isolated from the review in relation to these models and theo-
ries, usually also identified with the classical information processing approaches: (a) the mind extracts 
information from MERs, which acts as ‘vehicles’, or transmission media, for the information, (b) MERs 
and the concepts they represent are linked through some form of information ‘translation’ and (c) the 
translation is mediated mostly through mental capacities such as imagery and/or amodal symbolic 
forms, as well as working memory (e.g. Johnstone, 1982; Gooding, 2006; Tsui & Treagust, 2013; etc.) 
These assumptions, particularly limited working memory capacity as a central processing bottleneck, 
can be seen to influence many intervention designs. For instance, MER visualisation software used in 
chemistry, interactive computer simulations and virtual laboratories, are designed to address working 
memory limitations. Ironically, the software interventions do not seek to augment the student’s work-
ing memory and processing abilities, but only help offload some of the memory and processing load 
to the computer screen. Possibly because of this, such interventions have not been very successful in 
promoting RC (De Jong & Van Joolingen, 1998; Rutten, van Joolingen, & van der Veen, 2012). Further, 
by focusing on the ‘processor capacity’ as well as the inaccessible nature of information extraction and 
translation processes, these models and interventions make RC appear mysterious. They do not focus 
on the cognitive as well as practice elements that could lead to RC development (For instance, how 
and why are certain interventions effective in the development of RC? What role does practice play in 
the RC development process, apart from enhancing working memory load abilities? What is the nature 
of interaction between internal and external representations? What is the role played by interactivity 
in simulations and other software?).

Different from such load and translation accounts, a third set of models and studies take a relatively 
neutral stance on the nature of MERs and RC, but these approaches do not seek to generalise, or pro-
vide detailed accounts of the cognitive processes involved in MER integration. A small set of models 
and studies subscribes to recent cognition theories such as distributed and/or embodied cognition. 
However, these fail to provide a general framework for MER integration. Without such a general account, 
it is difficult to develop focused new media interventions that support RC, particularly interventions 
that take into account the differences in MERs across different disciplines. We propose such an account 
in the section below.

5. A distributed and embodied cognition approach to RC

In our view, to develop a general cognitive account of MER integration, it is necessary to take seriously 
the constitutive view of external representation, and focus on the interaction between internal processes 
and external representations. Such an account requires moving away from the classical information 
processing approach to cognition, and building on newer theoretical approaches in cognitive science, 
particularly distributed cognition and embodied cognition. The shift to these frameworks entails reject-
ing the exclusive focus on cognitive load, and focusing on interactions between internal models and 
external representations, and the mechanisms that support this interaction.

There are two reasons why such a shift is needed. First, MERs are not just inscription devices that 
encode information. They are also thinking and learning devices. The process of interacting with them 
augments cognition, and this interaction is a central component in forming internal models of imper-
ceptible phenomena. This means an account of the interaction process, and its role in forming internal 
models, is needed to understand MER integration. Such an account, outlining how interacting with 
external representations augment the imagination system, and cognition in general, is provided only by 
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distributed cognition (DC) models, particularly recent work that combines DC with embodied cognition 
(Chandrasekharan, 2009, 2014, 2016; Chandrasekharan & Nersessian, 2015; Kirsh, 2010). Secondly, the 
central component of models in science and engineering is dynamics, and the integration of MERs 
requires (and happens through) understanding of dynamics, particularly the way it is captured by MERs. 
This means a cognitive account of MER integration requires a model of how dynamics is processed by 
the cognitive system, specifically how it is generated from MERs (which are mostly static), and how 
interactivity contributes to the understanding of dynamics. Such an account is provided only by recent 
embodied cognition models (Chandrasekharan, 2009, 2014; Schubotz, 2007).

Since the focus of the new account is to help individual learners integrate MERs, we will be taking an 
individual-focused approach to distributed cognition, which Hutchins has recently termed ‘extended 
cognition’ (Hutchins, 2014). He distinguishes it from traditional DC, which he considers a system-level 
theory. Similar to this scoping of the DC framework since representation (internal and external) is the 
focus of the account, we do not consider radical embodied cognition frameworks that reject internal 
representation (such as ecological psychology and dynamic systems theory), which consider senso-
rimotor interaction with external entities both necessary and sufficient for cognition. We accept the 
argument that sensorimotor interaction is necessary, and develop a framework that is based on a 
coupling between sensorimotor interaction and representation, using the common coding model, 
which is a representationalist position within embodied cognition (Chandrasekharan & Osbeck, 2010).

The account we develop thus includes the key tenets of DC (cognition as a process distributed 
across people and artefacts, interaction between internal and external representations), and embodied 
cognition (enactive and modal internal models, participatory relationship with external entities). The 
following are the central theoretical assumptions of the account we propose:

(1)    Internal representations have a model-like structure (mental models), and they can run inde-
pendent of external representations, to provide knowledge. This process provides capabilities 
different from the processing of external representations.

(2)    Internal models have an enactive/simulative nature (Chandrasekharan, 2009; Nersessian, 
2010), and they are dynamic, with a neural network like structure.

(3) Internal models interact with external ones, and they are built and extended through this 
interaction process. This interaction augments cognition, and it provides capabilities different 
from the offline processing (just internal modelling) above.

(4)    The enactive nature of internal models is the key feature that enables the processing of dynam-
ics, which is the central explanatory process in science and engineering.

(5)    The integration of MERs is based on dynamics, and the mental simulation of dynamics. The 
motor system is the key player in the simulation of dynamics (Schubotz, 2007).

(6) The motor system is the central mediator in MER integration, as it is the major integrating 
system in the body (actions require integrating perception, proprioception, muscles, the 
vestibular system etc. in complex ways), and this integration capability is reused for other 
integrations, such as MER integration. This explains why the enaction/interaction features 
provided by new media help in understanding and learning science and engineering (and 
make discoveries possible using new interactive simulation systems such as Foldit), and also 
why integration of MERs based on static media is harder. This view also explains why activi-
ty-based classroom interventions facilitate the integration process.

Before discussing how distributed and embodied approaches to cognition could be extended to 
develop an account of the MER integration problem with the above features, we characterise the cog-
nitive processes involved in a generic integration problem. This generic account can be used to examine 
the different cognitive frameworks, to see which provides a better understanding of this problem.

The generic case of integration of MERs in science and engineering involves the observed (or 
described) actual dynamic behaviour of a physical system (such as a pendulum or a falling object or a 
chemical process), an equation capturing this behaviour, and graphs that display the equation’s output 
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for some sets of values. The transition to the equation is often mediated by geometric structures, such 
as free-body diagrams and vectors, and there may be other structural representations involved, such a 
molecular models. Broadly though, the learner needs to develop an integrated internal representation 
of the three modes – the phenomenon, its equation, and the graphs. If structural representations are 
present, the integration process has to deal with one more level of complexity. An indicator of inte-
gration is the ability to transform smoothly between the three modes. This transformation is difficult, 
because it requires shifting between spatial and numerical modes (e.g. graph and equation), as well 
as dynamic and static modes (e.g. phenomenon and equation). Even the spatial to numerical transfor-
mation requires understanding dynamics, as the students need to understand how the values in the 
equation get translated into a graph, which requires thinking of various values of equations and ‘move-
ments’ of the graph based on these values. Thus, to integrate the MERs, the student needs to ‘unfreeze’ 
the static representations, by generating their dynamic behaviour in imagination, and then connect 
these dynamics with the dynamic behaviour of the phenomenon. In the other direction, students also 
need to be able to ‘freeze’ the behaviour of real-world systems into equations (see Figure 9 below), so 
that limit cases and other variations can be explored and combined. This generic structure suggests a 
cognitive account of MER integration would need to outline:

(a)  how external representations connect with imagination.
(b)  how dynamic behaviour could be imagined from static external representations.

Once we have an understanding of these processes, we would be able to design interventions, par-
ticularly new media interventions that allow learners to quickly integrate MERs. Answering these two 
questions is not easy, as it requires bringing together complex literatures that cut across many areas of 
cognitive science. Answering the first question requires understanding how external representations 
are processed by the cognitive system. In our view, this question is best addressed within the distrib-
uted cognition (DC) framework (Hutchins, 1995a, 1995b), which was developed to study cognitive 
processes in complex (usually technical and scientific) task environments, particularly environments 
where external representations and other cognitive artefacts are used by groups of people. The DC 
approach was first outlined by Cole and Engeström (1993), Pea (1993), and Salomon (1993), and apart 
from the currently dominant model presented by Hutchins (1995a, 1995b), significant contributions to 
the initial framework were made by Cox (1999), Hollan, Hutchins, and Kirsh (2000), and Kirsh (2010, 1996, 
2001). Most work in DC is focused on understanding how internal and external representations work 
together to create and help coordinate complex socio-technical systems. The primary unit of analysis 
in DC is a distributed socio-technical system, consisting of people working together (or individually) 
to accomplish a task and the artefacts they use in the process. The people and artefacts are described, 

Figure 9. Processes involved in MER integration.
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respectively, as agents and nodes. Behaviour is considered to result from the interaction between 
external and internal representational structures.

The canonical example of external representational structures in DC is the use of speed bugs in a 
cockpit (Hutchins, 1995a). Speed bugs are physical tabs that can be moved over the airspeed indica-
tor to mark critical settings for a particular flight. When landing an aircraft, pilots have to adjust the 
speed at which they lose altitude, based on the weight of the aircraft during landing, for that particular 
flight. Before the origin of the bugs, this calculation was done by pilots while doing the landing oper-
ation, using a chart and calculations in memory. With the bugs, once these markers are set between 
two critical speed values (based on the weight of the aircraft for a particular flight), instead of doing 
a numerical comparison of the current airspeed and wing configuration with critical speeds stored 
in memory or a chart, pilots simply glance at the dial to see where the speed-indicating needle is in 
relation to the bug position. This external representation allows pilots to ‘read off ’ the current speed in 
relation to permissible speeds using perception. They can then calibrate their actions in response to 
the perceived speed difference. The speed bugs (an external artefact) thus lower the pilot’s cognitive 
load at a critical time period (landing), by cutting down on calculations and replacing these complex 
cognitive operations with a perceptual operation. The setting of the speed bugs also leads to a public 
structure, which is shared by everyone in the cockpit. This results in the coordination of expectations 
and actions between the pilots. These two roles of the speed bug (lowering cognitive load and pro-
moting coordination between pilots) are difficult to understand without considering the human and 
the artefact as forming a distributed cognitive system.

This account focuses on memory offloading, but it has been extended in two ways:

(1)    to show how processing, particularly mental rotation, is lowered using external manipulations 
that serve as ‘epistemic actions’ (Kirsh, 2010; Kirsh & Maglio, 1994).

(2)    how imagination is augmented by active manipulation, particularly in computational models 
(Chandrasekharan, 2009; 2014; Chandrasekharan & Nersessian, 2015; Marshall, 2007).

These studies, and other similar ones showing how external representations are used to generate 
action patterns (Bodemer, Ploetzner, Feuerlein, & Spada, 2004; Martin & Schwartz, 2005) suggest that 
the brain ‘incorporates’ the external representations (Chandrasekharan, 2014) as part of the imagination 
system. This incorporation process is considered to be driven by actions/manipulations done on the 
representations, and the exploration of many states of the representations. This incorporation view is 
different from the classical information processing view, where the information encoded in the rep-
resentation is extracted by the cognitive system, and all cognitive operations are internal operations 
done on this extracted information. The new approach suggests that actions and manipulations on 
MERs lead to the MERs getting incorporated – becoming part of the cognitive system. In this view, 
it would be possible to improve the process of integration (of the imagination and the external rep-
resentation), by restructuring the latter to support actions and manipulations, say by using new media 
approaches, or classroom interventions based on inquiry and activities (Lehrer & Schauble, 2006; Tytler, 
Prain, Hubber, & Waldrip, 2013). Such an approach to developing RC would be quite different from 
the approach based on cognitive load, as the incorporation approach tries to support the integration 
process directly using manipulations and feedback, rather than through simultaneous presentation 
of MERs to lower cognitive load.

The above account provides a rudimentary ‘incorporation’ model of how external representations 
connect with imagination (see Chandrasekharan, 2009; 2014 for details), and brings us to the second 
question: How is dynamics generated from static representations? Embodied cognition research argues 
that the brain and all cognitive processes developed for action, and the body and the motor system 
are therefore closely involved in most cognitive operations. Supporting this theoretical view, there is 
evidence that the motor system is used while generating dynamic information from static images (such 
as system drawings, see Hegarty, 2004) and vice versa. Everyday instances of this generation include: 
judging the sense of speed of a vehicle from its tyre marks (or judging tyre marks given speed), judging 
the sense of force from impact marks (or judging impact marks, given force), sense of movement speed 
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from photos of action (say soccer), sense of movement derived from drawings, cartoons, sculptures, 
etc. Formal experimental evidence for the use of the motor system in this process comes from work 
on the Two-Thirds Power Law for end-point movements such as drawings and writings. The law relates 
the curvature of a drawing trajectory with the tangential velocity of the movement that created the 
drawing/writing. The human visual system deals more effectively with stimuli that follow this law than 
with stimuli that do not. When the curvature–velocity relationship does not comply with the power law, 
participants misjudge the geometric and kinematic properties of dynamic two-dimensional point-dis-
plays (Viviani & Stucchi, 1989, 1992). Also, the accuracy of visuo-manual and oculomotor 2D tracking 
depends on the extent to which the target’s movement complies with the power law. This relation 
allows humans to judge the speed in which something was drawn, using curvature information, and 
vice versa (judge curvature given speed). This capacity is presumably what we use when we judge speed 
from tyre marks, and also evaluate drawings and paintings. Recent experimental evidence shows that 
observers simulate the drawing actions of a painter while observing paintings (Taylor, Witt, & Grimaldi, 
2012). There is also evidence that object-related hand actions are evoked while processing written text 
(Bub & Masson, 2012).

Such predictions can also work the other way, where given a dynamic trace, we can imagine and 
predict the static sample that comes next. In one experiment, dynamic traces of handwriting samples 
were shown to participants. They were then shown some samples of written letters (such as l and h), 
and asked to judge which letter came next to the shown trace. Participants could identify the letter 
following the trace more accurately (Kandel, Orliaguet, & Viviani, 2000) when the trace followed the 
Two-Thirds power law, i.e. the angular momentum of writing was related to curvature in a way laid out 
by the law. Accuracy went down significantly for traces that did not follow this relation. Based on this 
and other experiments, Viviani (2002) argues that ‘in formulating velocity judgements, humans have 
access to some implicit knowledge of the motor rule expressed by the Two-thirds Power Law’. Much of 
the experimental evidence in this domain is about the replication of biological movements from static 
images, but everyday experience (such as the tyre mark case) suggests that non-biological movements 
can also be replicated, and it is highly likely that this process is also based on motor system activation 
(Chandrasekharan, 2014; Schubotz, 2007).

This account suggests that the motor system needs to be activated to start the ‘unfreezing’ of MERs, 
to generate dynamic content using the static representation. It is possible that this activation process 
is difficult to do for novices, and new media interventions that allow manipulations on the MERs could 
help trigger this activation, thus setting the unfreezing process in motion. We are currently testing a 
new media system where the design provides active manipulation of all the MERs (Kothiyal et al., 2014). 
Note that this approach is different from the designs suggested by the cognitive load account, where 
manipulation of MER is not the central feature of the intervention. Also, this approach is in synergy with 
the ‘incorporation’ account provided by recent work in distributed cognition (Chandrasekharan, 2014; 
Chandrasekharan & Nersessian, 2015), as it suggests manipulation of the MERs as a way of promoting 
incorporation of the external representation with the imagination system. A related idea is that actions 
done on MERs with dynamic content would help improve integration, as the action system is involved 
in processing dynamics, and it is also the central integrating system in the body. This view provides an 
explanation for why interactivity provided by new media helps improve understanding and integra-
tion, and also why understanding and integration is limited with static media (Majumdar et al., 2014).

The above brief review of distributed cognition and embodied cognition approaches, and how 
they could together provide a general cognitive account of the MER integration problem, presents 
just an outline of the way these theoretical frameworks could contribute to our understanding of MER 
integration and RC. As of now, the two theoretical approaches only provide a way of understanding the 
‘unfreezing’ aspect of MER integration, and how external representations could be incorporated into 
imagination. The frameworks do not provide a clear way of understanding the mechanisms underlying 
the way dynamic processes are ‘frozen’ into equations. The general process involved is generating a series 
of intermediate models (such as free body diagrams and vectors), which turn dynamics into structural 
features, which are then turned into equations (Karnam, Agrawal, Mishra, & Chandrasekharan, 2016). 
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This process is similar to the ‘encapsulation’ of procedures, which are considered to create concepts 
that embed procedural elements (‘procepts’), as outlined by Tall et al. (1999).

Future work in these areas, particularly in close collaboration with science education research and 
new media development, may help provide a better understanding of this problem, and MER integration 
and RC in general. Design-based Research (Cobb, diSessa, Lehrer, & Schauble, 2003) appears to be an 
ideal way to bring together these disciplines to address the RC problem, as it offers a way of developing 
interventions that could test hypotheses about MER integration as well as cognitive processes. Our 
current work is focused in this direction, but we do not consider new media as stand-alone resources, 
to be used independent of teaching and classroom activity, as our results indicate that interaction 
does not automatically lead to integration – some guidance and peer discussion is required, as would 
be expected in the case of any cultural artefact that embeds conventions. We focus on new media 
because, unlike static media, they provide: (1) the possibility of making dynamics embedded in formal 
notations explicit and (2) action-based manipulation of this dynamics. We consider dynamics and the 
active manipulation of dynamics central to the integration process. Classroom activities can also be 
designed in such a way that they lead to interacting with the dynamics embedded in MERs. New media 
makes this process easier.

It is too early to make predictions about how this usage will work in practice, as there are many 
unknowns and possible permutations. There are groups that argue that the static MERs are outdated, 
as all science is moving to computational modelling, and classrooms are becoming digital. In this view, 
the MER integration problem is an artefact of the print media. However, there are studies showing 
that dynamic MERs do not by themselves solve the RC problem. We believe new media and classroom 
activities will support each other, but the new media will make the integration problem less formidable 
for both teachers and learners.

6. Conclusion

Integration of MERs is a critical skill in learning science, mathematics and engineering, and expertise in 
such integration, termed RC (RC), marks expertise in these fields. We argue that a theoretical account of 
RC that takes into account the constitutive character of MERs is needed, particularly to develop design 
guidelines for developing new embodied media interventions. As a first step to develop such an account, 
we reviewed the theoretical frameworks proposed for RC and related studies across the STEM domains 
(chemistry, biology, physics, mathematics, engineering), as well as within each domain. Addressing 
the results from this review, we outlined a theoretical account of RC that focuses on the interaction 
between internal processes and external representations, extending recent advances in distributed and 
embodied cognition. This proposal is preliminary, and just begins the mammoth task of developing 
an integrative and coherent approach to the RC problem. Particularly needed are collaborative and 
design-based research efforts that bring together STEM education, cognitive science and new media. 
Such a focused approach is required to develop theoretical and experimental frameworks that provide 
a better understanding of MER integration and RC. Much interesting work lies ahead.

Note
1.  Note that by MERs we mean elements of core practice. Models and simulations are not included in the review. We 

consider teaching–learning representations – representations used for teaching and/or learning, such as physical 
models and computational models for learning – different from MERs.
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